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Abstract A core goal of phylogenomics is to determine the evolutionary history of a
set of species from biological sequence data. Phylogenetic networks are able to
describe more complex evolutionary phenomena than phylogenetic trees but are
more difficult to accurately reconstruct. Recently, there has been growing interest in
developing methods to infer semi-directed phylogenetic networks. As computing
such networks can be computationally intensive, one approach to building such
networks is to puzzle together smaller networks. Thus, it is essential to have robust
methods for inferring semi-directed phylogenetic networks on small numbers of taxa.
In this paper, we investigate an algebraic method for performing phylogenetic
network inference from nucleotide sequence data on 4-leaf semi-directed
phylogenetic networks by analysing the distribution of leaf-pattern probabilities. On

simulated data, we found that we can correctly identify with high accuracy the
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undirected phylogenetic network for sequences of length at least 10kbp. We found
that identifying the semi-directed network is more challenging and requires
sequences of length approaching 10Mbp. We are also able to use our approach to
identify tree-like evolution and determine the underlying tree. Finally, we employ our
method on a real dataset from Xiphophorus species and use the results to build a
phylogenetic network.

Keywords Phylogenetic network, semi-directed network, phylogenetic invariants,

1. Introduction

Phylogenetic networks describe the evolutionary history of taxa where reticulate
evolution events, such as hybridisation and horizontal gene transfer, have occurred
(Bapteste et al. 2013). Biologists are becoming increasingly aware that such events
are common in the evolutionary histories of many species, and so the development
of methods for constructing phylogenetic networks from biological data is an active
area of research.

Over the past decades many methods of phylogenetic network reconstruction
have been suggested. One approach is to infer implicit networks that do not aim to
represent specific biological processes. For example, distance-based methods such
as Neighbor-Net (Bryant, Moulton, 2004 ) construct split networks directly from a
distance matrix without the need for sequence data. Other methods construct
networks by analysing gene trees (Than et al. 2008), concordance factors (Allman et
al. 2019), or quartets (Grunewald et al. 2013) and attempt to find the “best” network
that displays these. Several maximum parsimony algorithms have also been
developed for phylogenetic networks (Kanna, Wheeler, 2012). An alternative

approach is to place an evolutionary model on an explicit network (where each
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vertex in the network represents a biological event or ancestral species), thereby
creating a rooted, directed phylogenetic network. Methods such as maximum
likelihood e.g. (Wen et al. 2018, Lutteropp et al. 2022) or Bayesian inference e.g.
(Zhang et al. 2018) can then be used to determine how well a set of data fits a
certain model and thereby construct a phylogenetic network.

Recently, there has been increasing interest in inferring semi-directed
phylogenetic networks for evolutionary analysis (e.g. (Solis-Lemus, Ané, 2016; Solis-
Lemus, Bastide, 2017; Allman et al. 2019; Gross et al. 2021; Linz, Wicke, 2023)).
These are networks in which only some of the edges are directed, and these
directed edges usually indicate reticulate events (see e.g., Figure 1). Semi-directed
phylogenetic networks can be inferred from sequencing data by maximising a
likelihood function, but for larger networks, performing a full search of the parameter
space of a semi-directed model to determine the parameters that maximise a
likelihood function is often too computationally intensive to be practical. One solution
to this problem is to use pseudolikelihood, which is based on the likelihood formulas
of the 4-taxon subnetworks, as in (Solis-Lemus, Ané, 2016). Another approach is to
build such networks from knowledge of the networks displayed by a small number of
taxa. This approach has been used in the past for trees (e.g., (Schmidt et al. 2002))
as well as explicit networks (Oldman et al. 2016) and more recently for semi-directed
networks (Huebler et al. 2019; Allman et al. 2025; Frohn et al. 2025; Holtgrefe et al.
2025). One of the key challenges to this approach is to accurately determine each
subnetwork displayed by small numbers of taxa. Here, we attempt to address this

challenge.
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X. evelynae X. gordoni

X. xiphidium X. andersi

X. birchmanni  X. malinche  X. cortezi  X. pygmaeus

Figure 1. A semi-directed network with eight leaves, labelled by Xiphophorus

species, constructed from Figure 10 of (Solis-Lemus, Ané, 2016).

For phylogenetic trees, algebraic techniques based on phylogenetic invariants
have been used for both the understanding of evolutionary models and for methods
of phylogenetic tree inference, e.g. (Casanellas, Fernandez-Sanchez, 2007;
Chifman, Kubatko, 2014). Recently, algebraic methods have also been used to
determine when hybridisation between species is likely to have occurred (Blischak et
al. 2018) and combined with statistical learning techniques to infer small semi-
directed networks (Barton et al. 2022). In this paper, we investigate a method for
determining 4-leaf semi-directed networks that uses algebraic invariants for “group-

based” models of evolution, namely, the Jukes-Cantor (JC) model, and the Kimura 2-
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87 parameter (K2P) model. By identifying the state space of the four nucleic acids with
88 a mathematical structure called a group, group-based models enable a Fourier
89 transformation of the parameter space that simplifies the equations defining the
90 model. This, and their low number of parameters, makes them amenable to the
91 algebraic methods we use here. Furthermore, these models are commonly used to
92 model nucleotide substitution in the presence of reticulate evolution (for example
93 (Kong et al. 2024; Burbrink and Gehara 2018)).
94 As well as performing extensive simulations to understand the performance of the
95 method under various models, we show that it can be used to distinguish between
96 tree-like and non-treelike evolution. We also compare our method with the QNR-
97 SVM method (Barton et al. 2022) and employ our method on a real data set that has
98 been previously analysed using semi-directed networks in (Solis-Lemus, Ané, 2016)
99 and separately in (Blischak et al. 2018) to compare its performance with these

100 methods.

101

102 2. Materials and Methods

103 2.1 Background

104 For a rooted phylogenetic network, its semi-directed network is the mixed
105 graph obtained by unrooting the network and undirecting all edges except for the
106  reticulation edges. For the nucleotide substitution models we define on rooted

107  phylogenetic networks, only the semi-directed network is identifiable from the leaf-
108 pattern distribution (also called the marginal character distribution), that is, the

109  distribution of nucleotides observed at the leaves (Gross et al. 2021). This is

110 analogous for the case for phylogenetic trees, where, under the nucleotide

111  substitution models we use, only the unrooted tree topology is identifiable from the
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leaf-pattern distribution. Here, we only consider level-1 phylogenetic networks.
These are phylogenetic networks in which the reticulation vertices are sufficiently far
away from each other. More precisely, they are phylogenetic networks in which the
undirected cycles do not overlap.

We place a model of nucleotide substitution on a rooted phylogenetic network
in the form of a directed graphical model, by assigning a transition matrix to each
edge in the network (where each entry in the matrix is the probability of a particular
nucleotide substitution occurring along that edge), a distribution of nucleotides at the
root of the network (for us this will be the equilibrium distribution of the model), and
for each reticulation vertex, the probability that a particular position is inherited along
either reticulation edge. We refer to this final parameter as the "tree-ratio”, because
when it is either 0 or 1, the model becomes that of an unrooted tree. From this model
we can obtain expressions for the probability of observing the leaf-patterns (or
marginal characters) of the network. Each leaf-pattern is a sequence of nucleotides
that can be observed at the leaves of the network at a single position in a sequence
alignment.

By considering the numerical parameters of the model as free variables, we
think of the distribution of leaf-patterns as a multi-dimensional polynomial function.
These functions are complicated, but they can be simplified if we use certain
evolutionary models called “group-based” models (see e.g., Chapter 15 of Sullivant,
2018 for further details). For 4-state nucleotide models, there are three well known
group-based models: the Jukes Cantor model (JC), the Kimura 2-parameter model
(K2P), and the Kimura 3-parameter model (K3P). In each case, a Fourier
transformation can be applied to the model that makes the transformed expressions

for the distribution of marginal characters much simpler, although it is no longer



137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Algebraic Invariants for Inferring 4-Leaf Semi-Directed Phylogenetic Networks

probabilistic. These transformations were first described for phylogenetic trees in
(Evans, Speed 1993) and (Hendy, Penny, 1996), where the transformed distribution
functions are monomial (a polynomial with a single term), which makes them
especially amenable for algebraic study, and indeed, these models have been well
studied from an algebraic perspective (e.g., Sturmfels, Sullivant, 2005; Allman et al.
2011).

From an algebraic perspective, we view the phylogenetic tree or network and
substitution model as an algebraic variety (see e.g. Cox et al. 2007 for an
introduction). This object can be thought of as a high-dimensional surface, and
consists of all possible distributions of leaf-patterns that can be observed from the
model. Recent study of these objects has given identifiability results. For the JC
model, it was shown that the semi-directed network topology of large cycle networks
is generically identifiable from the distribution of leaf-patterns (Gross, Long, 2018).
Analogous results have been proven for the K2P and K3P evolutionary models
(Hollering, Sullivant, 2021), and for all three evolutionary models on level-1, triangle-
free phylogenetic networks (Gross et al. 2021). Further algebraic properties have
been determined for any triangle-free level-1 network under any group-based model
(Gross et al. 2024). In particular, for group-based evolutionary models, it is not
possible to identify the reticulation vertex in a 3-cycle from the leaf-pattern
distribution (Gross et al. 2021). More recently, for the JC model the triangle-free
property on level-1 networks has been relaxed to enable identifiability of the number
of reticulation vertices in a level-1 network, up to placement of reticulation vertices on
triangles, and identifiability results on some classes of level-2 phylogenetic networks

have been obtained (Englander et al. 2025).



161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

S. Martin, N.Holtgrefe, V. Moulton, R.M. Leggett

Algebraic invariants (also called phylogenetic invariants) are polynomial
functions that evaluate to 0 on all points of an algebraic variety given by a fixed
phylogenetic network and model of evolution. (Note that the term “phylogenetic
invariants” is sometimes used to mean only those algebraic invariants that belong to
exactly one tree or network, as in (Casanellas, Fernandez-Sanchez, 2007).) They
can be used to determine whether a set of data could have been produced by a
given network without the need for parameter estimation. One of the most well-
known examples of algebraic invariants are the edge invariants (Allman, Rhodes,
2007). These encode the set of splits in a phylogenetic tree from which the full tree
can be reconstructed and give rank conditions on certain matrices called flattening
matrices. In some circumstances, rank conditions on flattening matrices have been
shown to also hold for phylogenetic networks (Casanellas, Fernandez-Sanchez,
2021). The use of rank conditions on flattening matrices to reconstruct phylogenetic
trees from sequence data was employed in the software SVDQuartets (Chifman,
Kubatko, 2014).

Algebraic invariants have also been used to infer 4-leaf trees from simulated
data under the K3P model (Casanellas, Fernandez-Sanchez, 2007), and 4-leaf
networks under the JC model (Barton et al. 2022). Used as a method of inferring tree
or network topologies from aligned sequence data, they have several advantages.
First, finding the invariants for a fixed phylogenetic tree or phylogenetic network and
model of evolution need only be done once. For small trees, many invariants have
already been calculated and are available online (Casanellas, Garcia, Sullivant,
2005). Second, using invariants is a statistically consistent method to infer an
unrooted phylogenetic tree or semi-directed network topology, provided that an

appropriate set of invariants are used. Third, once the invariants have been
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calculated, applying the method to a dataset is simply a case of evaluating a fixed
number of polynomials, and so can be performed quicker than many other
statistically consistent methods, such as maximum likelihood.

Here, we investigate the practical identifiability of semi-directed networks and
the effectiveness of using algebraic invariants for network inference under the JC
and K2P nucleotide substitution models. We present a new algorithm to infer the 4-
leaf, 4-cycle network (also called a 4-sunlet network, a directed example of which is
depicted in Figure 2) from aligned sequence data using algebraic invariants. The
algorithm is based on that developed for 4-leaf trees in (Casanellas, Fernandez-
Sanchez, 2007). The 4-leaf, 4-cycle network has particular biological relevance in
that it can represent the evolutionary relationship between two species, their hybrid,
and an outgroup; and it is generically identifiable from leaf-pattern data. Furthermore,
knowledge of all the networks restricted to 4-taxa subsets, called ‘quarnets’, is
sufficient to rebuild a (level-1) phylogenetic network. When the network is assumed
to be triangle-free, we need only 4-cycles and 4-leaf trees to rebuild the network

(Huber et al. 2025; Frohn et al. 2025).
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Figure 2. A directed cycle network with cycle of length 4. Dashed edges represent
reticulation edges. The root vertex is highlighted in orange. This topology could
represent the evolutionary history between taxa where a is a hybrid species resulting

from a hybridisation event between taxa b and d, whilst c is an outgroup.

2.2 Algorithm to Infer Phylogenetic Network Topology from Aligned Sequence Data
We developed an algorithm that utilises phylogenetic invariants to infer the
correct 4-leaf, 4-cycle network from a multiple sequence alignment (MSA) of 4 taxa.

We use the notation (abcd) to denote the 4-leaf 4-cycle network with taxon “a” at the

leaf below the reticulation vertex and taxa “b”, “c”, and “d” at the leaves going anti-

clockwise from “a” (as in Figure 2). There are 12 = 4!/2 possible 4-leaf 4-cycle

networks, since (abcd) and (adcb) represent the same 4-cycle. Note that for each
network the underlying semi-directed graph is the same, but the taxa labels at the
leaves are permuted.

Each of the 4-leaf, 4-cycle networks is represented by a “surface” giving the
leaf-pattern distributions that can be obtained from that network and substitution
model. From an MSA from 4 taxa we obtain an empirical leaf-pattern distribution,
and we use algebraic invariants to determine how close this is to each of the
surfaces. A depiction of this process is given in Figure 3.

First, using the software Macaulay2 (Grayson, Stillman), we calculated
invariants for the 4-leaf, 4-cycle phylogenetic network depicted in Figure 2, for the JC
and K2P models. Full details on how these were calculated and which invariants
were chosen are given in the supplementary materials. We now briefly describe our

algorithm for inferring a phylogenetic network topology from aligned sequence data.
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Further details and a full description are given in the supplementary materials. For a
given MSA, we score each of the twelve semi-directed network topologies by
permuting the sequences in the MSA, applying the Fourier transform to the
corresponding leaf-pattern distribution, and then applying invariants to the result. The
first step is to read the alignment and count the number of columns that occur for
each leaf-pattern. This gives us an empirical leaf-pattern distribution which we store
as a single vector p. The next step is to transform p using the Fourier transformation,
giving us a new vector q.

Our algorithm next reads in a file of invariants that have undergone the
Fourier transformation as above, and we evaluate each invariant at the vector q. This
gives us a list of numbers from which a score for the corresponding network is given.
As in (Casanellas, Fernandez-Sanchez, 2007) we found that scoring using the 1-
Norm gave us the best results. In this case, the score for network V' is given by the

formula

S =D If@

where G is a set of invariants, and q is the transformed data point obtained from the
permuted MSA. Once each network has been scored, the networks are ordered by
score in ascending order, and the network with the smallest score is chosen as the

one most likely to have generated the data.
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Figure 3. A. Each leaf-labelled, semi-directed network is converted into a high-
dimensional “surface” in a high-dimensional space (depicted here as a 2D surface in
a 3D space), representing all leaf-pattern distributions possible from the model. B.
An MSA is converted into a point g in this space, and this lies exactly on the surface
(i.e., the alignment could have been generated by the model) if and only if f(q) = 0
for all invariants f. Since each f is a continuous polynomial, for points g close to the
surface, f(q) will be close to 0. Depiction of the surface was created using

CalcPlot3D available at https://c3d.libretexts.org/CalcPlot3D/index.html.

It is common to infer phylogenetic trees or networks from a single MSA. In this
case, it is desirable to have an idea of the confidence a tool has in its inference.
Bootstrap support (Felsenstein, 1985) is a popular method of providing confidence
intervals for phylogenetic inferences. Here, we sample with replacement many times
from the original data to create new datasets with similar properties. In our case, we

expect the new datasets will have leaf-pattern distributions close to that of the
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original dataset. We implemented a separate version of our script with inbuilt support
for parallelised bootstrapping. We applied our bootstrap method to real transcriptome
data from 24 swordtail fish and platyfish species (genus Xiphophorus) and two
outgroups (Pseudoxiphophorus jonesii and Priapella compressa), by independently
assessing each subset of 4 taxa. The transcriptome data was generated in (Cui et al.
2013) and alignments were kindly provided to us by the authors of (Blischak et al.
2018).

We implemented our inference algorithm in a python script evaluate.py, (and
with bootstrap in evaluate bootstrap.py) along with a python library for
reading, writing, and evaluating phylogenetic invariants. These are available from the

GitHub repository https://github.com/SR-Martin/4cycle invariants.

3. Results

In this section we evaluate our method on simulated data, compare its
performance to QNR-SVM, and demonstrate its utility on real data. All data was
simulated using the simulation scripts available on the GitHub page. Unless
otherwise stated, the results in this section are obtained using invariants from the

appropriate model, as described in the supplementary materials.

3.1 Simulated 4-leaf 4-cycle data

We generated MSA data from each of the twelve distinct leaf permutations of the
directed network depicted in Figure 2, each of which has a semi-directed network
identifiable from leaf-pattern data. For each network we generated 100 MSAs of
lengths 1kbp, 10kbp, 100kbp, 1Mbp, and 10Mbp under both the JC and K2P models.

For each edge, substitution rates were generated uniformly at random in the interval
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289 (0, 0.1) for JC, and (0, 0.15) for K2P. The tree ratio (y) was fixed at 0.5. Each MSA
290 was assessed using the algorithm described in Section 2.2, and in each case the 4-
291 cycle topology with the lowest score was taken as the “inferred network”. Figure 4.A
292  shows the confusion matrices for these datasets for the JC model, and Figure 4.B
293  shows the confusion matrices for the K2P model. In both cases we see that we

294  approach 100% true positive and 0% false positive rates as the sequence length
295 approaches 10Mbp. Furthermore, we can see the set of 4-leaf 4-cycle networks is
296 partitioned into three sets, where in each set the circular order is the same (e.g., the
297 first set is given by (0123), (1230), (2301), and (3012)). Figures 4.A and 4.B show
298 that at lengths of 1kbp, we can identify the correct circular order with close to 100%
299 true positive rate. In this case, identifying the circular order is equivalent to identifying

300 the undirected phylogenetic network.
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Figure 4. A. Confusion matrices for inference of 4-leaf, 4-cycle networks from data
simulated under the JC model. B. Confusion matrices for inference of 4-leaf, 4-cycle
networks from data simulated under the K2P model. C. Distribution of scores from
data generated by the network (0123) under the JC model. D. Distribution of scores

from data generated by the network (0123) under the K2P model

We found a clear distinction between scores for the true network, and scores for the
other networks. Figure 4.C and D show the distribution of scores obtained for each
network when the true network was (0123), under the JC and K2P models
respectively. Again, we can see that scores for networks with the correct circular
order are smaller than scores for all others from 1kbp. At each alignment length we
see that the mean score of the true network is smaller than the mean scores of all
others, suggesting a bootstrap approach might be beneficial (see Section 3.7). At
1Mbp there is no overlap between the interquartile range of scores for the true
network and the interquartile range of scores for all other networks. By 10Mbp, this
effect is more pronounced, and the score for the true network is smaller than the

scores for other networks with the same circular order.

3.2 Varying the tree ratio

We generated further datasets where the 4-leaf, 4-cycle network was fixed and
the tree ratio y was varied from 0.0 to 1.0 in intervals of 0.05. As before, we
generated 100 MSAs of length 1kbp, 10kbp, 100kbp, 1Mbp, and 10Mbp for both JC
and K2P models. Figure 5 shows the number of correctly inferred networks in each
case for the JC model (5.A) and K2P model (5.B). Observe that when y = 0 or 1 we

obtain a low percent of correctly identified networks regardless of MSA length,
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because in this case the data is from a phylogenetic tree, and there is not a unique

semi-directed phylogenetic network that could have produced it.
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Figure 5. A. Percent of tree-ratio datasets where the network was correctly identified
(left) and average score over all datasets that the correct network achieved (right) for

JC. B. Analogous plots for K2P datasets.

3.3 Identification of Treelike versus Non-treelike Evolution

In many cases, it may not be known whether a set of taxa has undergone
reticulate evolution or not. In this section, we focus on using our method to determine
whether data from four taxa has been generated from a tree (treelike) or a 4-leaf, 4-

cycle network (non-treelike).
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To do this, we make the following observation: for a fixed model of evolution,
the model for a 4-leaf unrooted tree is contained in the models of the eight 4-leaf, 4-
cycle networks that display the tree, and is not contained in the remaining four. A
diagram showing these containments for the 4-leaf tree ((1,2), (3,4)) can be found in
Supplementary Figure S5. Therefore, if a set of data is generated by a tree, we
expect the score that this data obtains via our invariants method to be low for 8 of
the networks, and high for the remaining 4 networks. Furthermore, from the partition
of the networks by their scores we can determine which unrooted tree generated the
data. The scripts evaluate.py and evaluate bootstrap.py automatically
search for this signature and inform the user when it has been found.

We found that this signature is identifiable even for short alignment lengths
(see Figure 6.C). In this case, when y = 0, evolution has been treelike, along a tree
which we refer to as tree 1. When y = 1, evolution has also been treelike, along a
different tree which we refer to as tree 2. In all other cases evolution has been non-
treelike. Figure 6.A shows that for the data simulated under the JC model, we
approach a 100% true positive rate and 0% false positive rate for alignments of
length 10Mbp. Figure 6.B shows a similar picture for the data simulated under the

K2P model.
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Figure 6. A. Percent of JC datasets identified as evolving along either tree 1 or tree
2. B. Percent of K2P datasets identified as evolving along either tree 1 or tree 2. C.

Scores assigned to networks generated along tree 1 (i.e. y = 0) under the JC model.
The low scores of eight of the networks are clearly identifiable. D. Scores assigned

to networks generated along tree 1 under the K2P model.

3.4 Assessment against QNR-SVM

We assessed our method against the QNR-SVM method presented in Barton
et al. (2022). This method uses a support vector machine to analyse the residuals
from a set of phylogenetic invariants, one for each identifiable semi-directed
phylogenetic network topology on 4 leaves. In particular, the method can identify
undirected 3-cycles (that is, quarnets that contain 3-cycles in which the reticulation

vertex is not identified). We assessed our method on the simulated data available in
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Barton et al. 2022, from the three unrooted 4-leaf tree topologies (networks 1,2, and

3 in Barton et al. 2022), the twelve 4-cycle topologies (networks 10-22), the six

topologies with a single 3-cycle (networks 4-9), and the 3 topologies with two 3-

cycles (networks 22-24). The data was simulated under a JC model with branch

lengths of cycle and cycle-adjacent edges chosen uniformly at random between 0.05

and 0.2, and branch lengths of all other edges chosen uniformly at random between

0.05 and 0.4. The tree-ratio parameter y was chosen uniformly at random between

0.25 and 0.75, and the alignment length was 1Mbp. The results of our method on

this data are displayed in Figure 7.

A.

Inferred Network

Network

(4,1,3,2) -
(3,1,4,2) -
(4,2,1,3) -
(1,2,4,3) -
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(1,2,3,4) -
(1,4,2,3) -
(2,3,1,4) -
(3,1,2,4) -
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Figure 7. A. Confusion matrix for analysis of datasets from Barton et al. (2022). The

first three columns are datasets simulated from phylogenetic trees. The next 12
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columns are from 4-leaf 4-cycle networks. The next 6 columns, labelled network 4 to
9 are 3-cycle networks. The final 3 columns are double 3-cycle networks. (See
Figure 5 of Barton et al. 2022). Each column represents 200 datasets. B. Scores for
each 4-cycle network on data from (left) a single 3-cycle (network 4) and (right) a

double 3-cycle (network 22).

We found that on trees and 4-cycles, our method gives very similar results to
those in Barton et al. (2022) (see Figure 5 therein), with all topologies being
identified at close to 100% true positive rate. In particular, here we are able to
correctly identify a higher proportion of the 4-leaf trees (lower left box in Figure 7)
than in Barton et al. 2022. However, we note that here we do not attempt to identify
phylogenetic networks containing 3-cycles, and these accounted for many of the
false-positives for the 4-leaf tree data in Barton et al. (2022). Observe that the
convergence of our method on this data is an order of magnitude better than the
simulated data in Section 3.1.

We do not attempt to identify topologies with 3-cycles, since the placement of
the reticulation vertex is not identifiable. However, it is helpful to know how our
method performs in these cases. In most cases we infer the 4-leaf tree obtained by
collapsing the 3-cycle to a single point (Figure 7.A). Inspection of the scores reveals
a similar situation to the scores on tree topologies in Section 3.3, where particular

topologies consistently score lower than others (Figure 7.B).

3.5 Data simulated under the general Markov model
Although computationally tractable, the JC and K2P evolutionary models are

restrictive in terms of the substitution rates they allow, and may not accurately reflect
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real-world processes. We assessed our method on data simulated under the general
Markov model, which places no restrictions on the form of the transition matrices
placed along edges in our network. This model is also known as the unrestricted
(UNREST) model (Yang 1994). As before, we simulated 100 MSAs of length 1kbp,
10kbp, 100kbp, 1mbp, and 10mbp, from the 4-leaf 4-cycle network (0123) (as in
Figure 2). For each MSA, transition matrices and the root distribution were randomly
generated. To maintain biological plausibility, each transition matrix had substitution
rates generated independently at random from a uniform distribution between 0%
and 5% (with diagonal entries ensuring the row sum equals 1). The first three entries
of the root distribution were generated independently at random from a uniform
distribution between 20% and 30%, with the final entry ensuring they summed to 1.

In all cases we set the tree ratio y = 0.5.

We assessed each dataset using both the JC and K2P invariants from the previous
sections. The results are displayed in Figure 8. In both cases the true network
becomes the lowest scoring network as the MSAs get longer, up to a rate of 99% for
the MSAs of length 1Tmbp when using the JC invariants (Figure 8.A). As with our
previous simulations, we find that networks with the correct circular order score lower
than others (Figure 8.B). For both sets of invariants, the scores for these networks
show good separation from the scores for other networks, particularly for the K2P
invariants. However, unlike in our previous simulations, the score of the true network
is not substantially less than others with the same circular order, making it more

difficult to place the reticulation vertex correctly.
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Figure 8. A. The percent of datasets for which the true network has the lowest score
when assessed with the JC and K2P invariants. JC invariants appear to perform
better than K2P invariants. B. Boxplots of the scores for each network for JC (first
row) and K2P (second row). Scores for the networks with the correct circular order

are noticeably lower than others, particularly for the K2P invariants.

3.6 Data simulated under the network multispecies coalescent model

For a group of species whose evolution is described by a phylogenetic
network, gene tree discordance can be caused by genes that evolve along different
trees displayed by the species network. However, gene tree discordance can also be
caused by phenomena such as incomplete lineage sorting. This is modelled by the
multispecies coalescent model (MSC), which given a species tree, describes a
distribution of gene trees that could be produced by that species tree (Rannala et al.

2020). The network multispecies coalescent model (NMSC) extends the MSC model
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to allow for species networks that describe events such as hybridisation (Degnan
2018). This model is also known as the multispecies coalescent with introgression
(MSci) model (Jiao et al.2021).

In our approach, we model evolution at a single molecular site on a level-1
phylogenetic network, and assume all sites are independent and identically
distributed. We therefore do not model the effects of incomplete lineage sorting.
Nonetheless we find that our method has some robustness to data simulated under
the NMSC model, and is still able to predict the correct undirected network in many
cases.

We simulated 1,000 gene trees under the NMSC model for each of the three
directed networks in Figure 9.A, using PhyloCoalSimulations (Fogg et al. 2022).
Each network represents the history of four species for which a single hybridisation
event occurred, and in each case the corresponding semi-directed network is the 4-
leaf 4-cycle network (0123). The first two networks are ultrametric (all paths from the
root to each leaf have equal length). For each network we performed 5 sets of
simulations, by scaling all edge lengths in the network by 0.1, 0.5, 1, 5, and 10. Here,
edge lengths are in coalescent units, with shorter edges resulting in a larger gene
tree discordance effect coming from incomplete lineage sorting, and longer edges
resulting in a larger gene tree discordance effect coming from the hybridisation
event.

Next, for each set of gene trees we simulated 10 independent multiple
sequence alignments under the JC model using AliSim (Ly-Trong et al. 2022). Here,
each gene had length 1,000bp and the sequences from all 1,000 genes were
concatenated, for a total length of 1mbp. To convert from coalescent units to

expected number of mutations we assumed an effective population size N, = 10°,
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and a mutation per generation rate u = 1078. The exact commands we used for
simulation can be found in the Supplementary Materials.

Each MSA was then assessed using our method. We found that when the
length from root to tip was at least 1 coalescent unit, we could reliably determine the
undirected network, and at 10 coalescent units we could determine the semi-directed
network (Figure 9.B). As branch lengths got shorter, this was less certain; for
networks 1 and 3 we still obtained the correct undirected network, but for network 2

we did not (Figure 9.B).
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Figure 9. A. Three different rooted network topologies, produced using PhyloPlot
(Ané 2022). B. Histograms of the scores from our method. Each column corresponds
to the scores obtained on the network in that row, with edge lengths multiplied by
0,1, 0.5, 1, 5, and 10 coalescent units (CU) respectively. Each plot shows box plots
of the score for each of the 12 semi-directed networks over 10 simulated alignments

of length 1mbp.
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3.7 Inference of networks from real datasets with many taxa

Here we demonstrate the utility of our method on aligned transcriptome data
from 24 swordtail fish and platyfish species (genus Xiphophorus) and two outgroups
(Pseudoxiphophorus jonesii and Priapella compressa), generated in (Cui et al.
2013). Each of the Xiphophorus species belongs to one of three distinct clades;
southern swordtails, northern swordtails, and platyfishes (split further into southern
platyfishes and northern platyfishes). Since our method is restricted to four taxa, we
looked at each subset of four taxa individually, giving a total of 14,950 subsets. The
data consists of 10,999 alignments, each of length at least 500bp, for a total
alignment length of 16.85Mbp. Since we do not use positional information, we
concatenated all alignments into a single alignment. Next, we extracted the
concatenated alignment for each subset of four taxa. Each of these subsequent
alignments was analysed by our bootstrap method, with 100 bootstrap replicates in
each case, using the K2P invariants (see below for rationale). Here, we ignore
columns in the alignment containing the gap character “-”. Without gaps, alignments
between subsets of four taxa ranged between 180kbp and 3.37Mbp.

We then used the software Squirrel (Holtgrefe et al. 2025) to create a level-1
phylogenetic network displaying the relationships between all 24 Xiphophorus
species. Squirrel is a new approach that can take as input the quarnets computed
using the method presented here to build larger level-1 (triangle-free) phylogenetic
networks on many taxa. When constructing cycles of length greater than 4 in this
network, Squirrel uses only the circular ordering of the 4-sunlets, and not the position

of the reticulation. In the previous section, we found that the K2P invariants were
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most likely to determine the correct circular ordering on data generated under the
general Markov model (Figure 8.B), so we chose to use these invariants.

Of the 14,950 4-taxa subsets, 7,028 (47%) had 100% bootstrap support for a
particular tree (6,175) or 4-cycle (853) topology, and 8,982 (60.1%) had at least 90%
support for a particular tree (6,325) or 4-cycle (2,657) topology. Almost all (14,561)
had at least 50% support for a particular tree (6,459) or 4-cycle (8,102) topology,
consistent with widespread hybridisation between Xiphophorus species, as
demonstrated in previous analyses of this dataset (Cui et al. 2013; Solis-Lemus and
Ané 2016; Blischak et al. 2018). The bootstrap results show that the inference of 4-
cycles is less certain than the inference of trees, likely due to the difficulty in placing
the reticulation vertex, which we observed in Section 3.1. The full results for all 4-
subsets are available in the Supplementary data.

Next, we created a level-1 phylogenetic network using an adapted version of
the software Squirrel. For input, we gave Squirrel the highest-supported tree or 4-
cycle network from each 4-subset, and these were weighted by the corresponding
support value. Squirrel allows exactly one taxon to be designated the outgroup in
order to root the network. We designated P. compressa as the outgroup, and
therefore excluded all subsets containing Ps. jonesii. The network produced by
Squirrel is displayed in Figure 10. It shows clear separation between the clades
(although the Southern Swordtails do not form a monophyletic group) and is in
agreement with that produced in (Solis-Lemus and Ané 2016, see Figure 10 therein).
In particular, we find a reticulation event between Xiphophorus xiphidium and the
Northern Swordtail clade, exactly as described in (Solis-Lemus and Ané 2016) and
also reported in (Blischak et al. 2018). We also find further reticulation within the

Northern Swordtail clade, in line with the results of Cui et al. (2013). For example,
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537 they constructed two trees that placed Xiphophorus nezahualcoyotl as sister to
538  Xiphophorus cortezi and Xiphophorus montezumae respectively. Here, we find a

539 reticulation event enabling both placements.
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540
541 Figure 10. The level-1 phylogenetic network produced by Squirrel, using the
542 bootstrap-supported quarnets from Xiphophorus data. Dashed red lines indicate
543 reticulation edges.
544
545 3.8 Timings
546 Figure 11 shows the time taken and maximum memory usage for the analysis

547  of the simulated data from Section 3.1. Each analysis was run on a single CPU with

548 8GB of RAM. Since each dataset is evaluated on a fixed set of invariants (that have
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been pre-computed and are stored in a text file), most of the time is taken on reading
the alignments and counting leaf patterns to obtain the empirical leaf-pattern
distribution, and then performing a Fourier transform of this data. The time therefore
scales with the length of the alignment. Shorter alignments perform quickly
(seconds), but longer alignments can take several minutes. Memory usage scales
with alignment length, as the whole alignment is loaded into memory to calculate the
empirical distribution of leaf-patterns. However, this is not necessary and could be

improved so that memory usage was fixed by reading alignments piecewise.
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Figure 11. Timings and max memory usage for simulated JC data (Section 3.1) split

by alignment length.
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4 Discussion

We have developed a novel method for inferring a semi-directed network
topology from aligned sequence data between four taxa. We demonstrate its use in
identifying 4-leaf 4-cycle networks from simulated data, and in identifying whether
reticulate evolution is likely to have occurred. We have shown that we can identify
the undirected network with sequences of length 1kbp but require longer sequences
(up to 10Mbp) to determine which vertex is the reticulation vertex and thereby
identify the semi-directed network. Furthermore, we show that our method can detect
when evolution between taxa has been treelike, converging quickly to a high true
positive rate and low false negative rate as alignment length increases.

On simulated data we observe a rate of convergence that is much less than the
analogous rate for trees. In (Casanellas, Fernandez-Sanchez, 2007), the authors
observe almost 100% accuracy for alignments of length 10kbp on 4-leaf trees under
the K3P model. For 4-leaf, 4-cycle networks under the JC and K2P models, we do
not achieve 100% accuracy until alignment lengths are in the order of 10Mbp.
However, for alignments of length at least 1kbp, we were able to infer with high
accuracy the correct circular ordering of 4-leaf 4-cycle networks and thereby
determine the undirected network. There are three circular orderings possible, each
corresponding to a choice of two out of three 4-leaf unrooted trees displayed by the
network. Thus, when restricting to undirected networks, our results are comparable
to those in (Casanellas, Fernandez-Sanchez, 2007). Locating the correct reticulation
vertex appears to be the main difficulty. We conjecture that the leaf-pattern
distribution varieties of 4-leaf 4-cycle networks with the same circular ordering are

close together geometrically. The scores displayed in Figure 4.C and 4.D support
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this, and this makes inference difficult. The varieties corresponding to any two 4-leaf-
4-cycle networks contain exactly one variety corresponding to a phylogenetic tree in
their intersection, and so for data where the tree ratio is close to 0 or 1, the true
semi-directed network topology will be more difficult to infer. This can be observed in
Figure 6.

We compared our method with the QNR-SVM method in (Barton et al. 2022) and
found the performance of our method comparable with theirs on trees and 4-cycles,
with true positive and false positive rates very similar. Unless it is known that a
dataset is similar to data used in the pretrained QNR-SVM model, to use QNR-SVM
one must first train the model on the data. The method we present has the
advantage that it does not require training and is therefore much quicker to run. We
found that the convergence of our method was an order of magnitude better on the
QNR-SVM data than on our own simulated data sets, with a true positive rate of
almost 100% being achieved on data from alignments of length 1Mbp. The main
difference in the two datasets is that the QNR-SVM 4-leaf 4-cycle networks are less
symmetric, with branch lengths having different ranges depending on the branch. A
better understanding of the geometry and how this corresponds to the parameter
space may enable faster convergence.

Since we do not attempt to identify 3-cycle topologies, we were unable to
identify the correct topology for the data in (Barton et al. 2022) generated from 3-
cycle topologies. Nonetheless, we analysed this data using our method and
inspected the results. In most cases our method inferred the 4-leaf tree obtained by
collapsing the 3-cycle(s) to a single vertex (Figure 7.A). When subsequently building
a phylogenetic network using Squirrel, this will not affect the result, since Squirrel will

collapse 3-cycles to a single vertex on all input quarnets. We found that for each 3-
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612  cycle topology, particular 4-cycles scored consistently lower than others, much like
613 the case for 4-leaf trees in Section 3.3. For the networks with a single 3-cycle, this is
614 expected, since, under the JC substitution model, each 3-cycle model is contained in
615 exactly four of the 4-cycle models (see Figure 10 of (Gross, Long, 2018)). The

616 distribution of scores in this case lies somewhere between the distribution for 4-

617 cycles (Figure 4.C) and the distribution for trees (Figure 6.C), which agrees with the
618 containment results. Thus, a very careful analysis of the scores here may enable us
619 to determine quarnets containing a single 3-cycle, in a similar way to how we

620 determine treelike evolution. For the topologies with two 3-cycles however, we do not
621 have the same containment of models, so the results here are less clear. The

622  distribution of scores in this case was closer to that of the 4-leaf trees. Further work
623 is needed to determine whether we can identify these topologies from the 4-cycle
624  scores.

625 We also assessed our method on data simulated under different models.

626  Under the general Markov substitution model, we found that both sets of invariants
627 performed well when inferring only the undirected network, but placement of the

628 reticulation vertex was less reliable, even for longer alignments. Under the network
629  multispecies coalescent model, we found that our method has some robustness to
630 incomplete lineage sorting when this was not the main source of gene tree

631 discordance, and was able to pick out the correct semi-directed network. In some
632 cases, even when incomplete lineage sorting was the main source of gene tree

633 discordance, our method was able to determine the correct undirected network.

634 Our method looked at small networks with 4 taxa. In principle, one can apply the
635 same method to larger networks with more taxa, but the problem of calculating

636 invariants for larger networks is currently intractable. Alternatively, one could
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construct a larger network by computing networks on smaller numbers of taxa and
puzzling them together to make larger networks (see e.g. (Huber, Moulton, 2013;
Oldman et al. 2016) where directed networks are constructed from 3-leaf networks).
Recently, we made some progress in this direction for semi-directed networks by
developing a new approach that can take as input the quarnets computed using the
method presented here to build larger level-1 (triangle-free) phylogenetic networks
on many taxa, or directly from MSAs using a heuristic based on statistical geometry
(Holtgrefe et al. 2025). This approach is implemented in the software Squirrel. Here.
we applied our new method, combined with bootstrapping, to aligned transcriptome
data from swordfish species and used the results as input for Squirrel to create a
level-1 phylogenetic network. This network displayed previously identified
hybridisation events and was largely consistent with previous analyses.
Bootstrapping enabled us to give confidence intervals to the tree or 4-leaf 4-cycle
networks we inferred, which we then used as weights for the corresponding network
when given to the software Squirrel. However, we are only able to give the single
most supported topology for each 4-subset to Squirrel. This means that information
on other topologies that might be well-supported is lost. Future work on Squirrel will
take alternative topologies into account, and we believe will provide more accurate
phylogenetic network reconstruction.

In our simulations, we found that we were able to identify the circular ordering of
4-cycles with high accuracy from smaller alignments, whereas identifying the position
of the reticulation vertex required longer alignments, However, for constructing larger
level-1 phylogenetic networks, Squirrel only uses the placement of the reticulation
vertex in a 4-cycle quarnet to place the reticulation vertex in 4-cycles in the final

network. For larger cycles in the final network, the circular ordering of the 4-cycle
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quarnets are used. Thus, we may still be able to create accurate level-1 phylogenetic
networks even if we are not able to always identify the correct reticulation vertex, as
is the case for shorter alignments.

We developed several python scripts for both simulating and assessing aligned
sequence data. These scripts read in plain-text files containing expressions for the
phylogenetic invariants to use and may therefore be useful for other researchers
assessing other sets of invariants. Our tool performs quickly on all datasets, with
time demand growing with alignment length. The computations that take the most
time are calculating the empirical distribution of leaf-patterns, followed by performing
a linear transformation of this distribution. Both tasks are parallelisable and
implementing this could increase the speed by up to 12x, although we have not
explored this yet. The remaining time is spent evaluating the polynomial invariants
on the transformed frequency data, and this is also parallelisable. Thus, there is
potential for our tool to be significantly faster. The reason we can perform network
inference relatively quickly is that the most difficult computations (computing the
invariants of the networks) need only be done once. We have already done them
and distribute the results with the tool. The speed at which this tool runs means that
it may be useful for exploratory or initial analyses of large datasets. Indeed, our tool
could be used as a single stage in a larger phylogenetic analysis pipeline,
complementary to other methods. For example, the bootstrap values we obtain could
be used as a fast and efficient way to obtain priors for a deeper Bayesian analysis, in
order to gain further support for a particular topology or for parameter estimation.

One of the biggest challenges of this work was calculating invariants. We used
methods in elimination theory to find a Grébner basis with the software Macaulay2,

but this does not scale well. Indeed, we were only able to calculate degree 2
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invariants for the K3P model. This model is more versatile than K2P and JC, so we
hope our results provide motivation for developing better methods of calculating
invariants in this case. In (Cummings et al. 2024), the authors reduce the
calculations for finding quadratic invariants for 4-leaf, 4-cycle networks under the
Cavender-Farris-Neyman (CFN) 2-state model to finding the kernel of a linear map.
The result is a much faster method of calculating invariants than using Grobner basis
methods and has been extended to higher degree invariants and other group-based
models in (Cummings, Hollering, 2025), where the authors were able to calculate all
minimal generators of the 4-leaf, 4-cycle network under the K3P model up to degree
3. However, even the K3P model is somewhat simplistic, so we would like to be able
to calculate invariants for more complex substitution models such as the generalised
time reversible (GTR) model, or models that incorporate a molecular clock. Work in
this direction has been recently performed for the CFN model on phylogenetic trees
in (Coons, Sullivant, 2021), and recent theoretical results for the GTR model on
phylogenetic trees (Casanellas et al. 2024 ) suggest that it may be possible to
compute phylogenetic invariants for those models using similar methods to those we
used here.

We currently do not have an interpretation of the invariants we have found in
terms of the network topology. In the Supplementary Materials, we determine which
of the invariants belong only to a single topology, and which are shared between
different topologies, but we do not know what (if anything) they are telling us of the
topology. Having a greater understanding of the invariants, or determining invariants
that correspond to different topological features may enable faster convergence than
we have observed here, or they may enable a multi-step approach to inferring

networks, in which first invariants are applied to find e.g. the correct circular order,
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and once this is determined, different invariants could be applied to determine the
reticulation vertex. Such a multi-stage approach would also enable the use of

invariants of different degree. This is the topic of future work.
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