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Abstract A core goal of phylogenomics is to determine the evolutionary history of a 14 

set of species from biological sequence data. Phylogenetic networks are able to 15 

describe more complex evolutionary phenomena than phylogenetic trees but are 16 

more difficult to accurately reconstruct. Recently, there has been growing interest in 17 

developing methods to infer semi-directed phylogenetic networks. As computing 18 

such networks can be computationally intensive, one approach to building such 19 

networks is to puzzle together smaller networks. Thus, it is essential to have robust 20 

methods for inferring semi-directed phylogenetic networks on small numbers of taxa. 21 

In this paper, we investigate an algebraic method for performing phylogenetic 22 

network inference from nucleotide sequence data on 4-leaf semi-directed 23 

phylogenetic networks by analysing the distribution of leaf-pattern probabilities. On 24 

simulated data, we found that we can correctly identify with high accuracy the 25 
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undirected phylogenetic network for sequences of length at least 10kbp. We found 26 

that identifying the semi-directed network is more challenging and requires 27 

sequences of length approaching 10Mbp. We are also able to use our approach to 28 

identify tree-like evolution and determine the underlying tree. Finally, we employ our 29 

method on a real dataset from Xiphophorus species and use the results to build a 30 

phylogenetic network.  31 

Keywords Phylogenetic network, semi-directed network, phylogenetic invariants,  32 

 33 

1. Introduction 34 

Phylogenetic networks describe the evolutionary history of taxa where reticulate 35 

evolution events, such as hybridisation and horizontal gene transfer, have occurred 36 

(Bapteste et al. 2013). Biologists are becoming increasingly aware that such events 37 

are common in the evolutionary histories of many species, and so the development 38 

of methods for constructing phylogenetic networks from biological data is an active 39 

area of research. 40 

Over the past decades many methods of phylogenetic network reconstruction 41 

have been suggested. One approach is to infer implicit networks that do not aim to 42 

represent specific biological processes. For example, distance-based methods such 43 

as Neighbor-Net (Bryant, Moulton, 2004) construct split networks directly from a 44 

distance matrix without the need for sequence data. Other methods construct 45 

networks by analysing gene trees (Than et al. 2008), concordance factors (Allman et 46 

al. 2019), or quartets (Grünewald et al. 2013) and attempt to find the “best” network 47 

that displays these. Several maximum parsimony algorithms have also been 48 

developed for phylogenetic networks (Kanna, Wheeler, 2012). An alternative 49 

approach is to place an evolutionary model on an explicit network (where each 50 
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vertex in the network represents a biological event or ancestral species), thereby 51 

creating a rooted, directed phylogenetic network. Methods such as maximum 52 

likelihood e.g. (Wen et al. 2018, Lutteropp et al. 2022) or Bayesian inference e.g. 53 

(Zhang et al. 2018) can then be used to determine how well a set of data fits a 54 

certain model and thereby construct a phylogenetic network.  55 

Recently, there has been increasing interest in inferring semi-directed 56 

phylogenetic networks for evolutionary analysis (e.g. (Solís-Lemus, Ané, 2016; Solís-57 

Lemus, Bastide, 2017; Allman et al. 2019; Gross et al. 2021; Linz, Wicke, 2023)). 58 

These are networks in which only some of the edges are directed, and these 59 

directed edges usually indicate reticulate events (see e.g., Figure 1). Semi-directed 60 

phylogenetic networks can be inferred from sequencing data by maximising a 61 

likelihood function, but for larger networks, performing a full search of the parameter 62 

space of a semi-directed model to determine the parameters that maximise a 63 

likelihood function is often too computationally intensive to be practical. One solution 64 

to this problem is to use pseudolikelihood, which is based on the likelihood formulas 65 

of the 4-taxon subnetworks, as in (Solís-Lemus, Ané, 2016). Another approach is to 66 

build such networks from knowledge of the networks displayed by a small number of 67 

taxa. This approach has been used in the past for trees (e.g., (Schmidt et al. 2002)) 68 

as well as explicit networks (Oldman et al. 2016) and more recently for semi-directed 69 

networks (Huebler et al. 2019; Allman et al. 2025; Frohn et al. 2025; Holtgrefe et al. 70 

2025). One of the key challenges to this approach is to accurately determine each 71 

subnetwork displayed by small numbers of taxa. Here, we attempt to address this 72 

challenge. 73 
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 74 

Figure 1. A semi-directed network with eight leaves, labelled by Xiphophorus 75 

species, constructed from Figure 10 of (Solís-Lemus, Ané, 2016). 76 

 77 

For phylogenetic trees, algebraic techniques based on phylogenetic invariants 78 

have been used for both the understanding of evolutionary models and for methods 79 

of phylogenetic tree inference, e.g. (Casanellas, Fernández-Sánchez, 2007; 80 

Chifman, Kubatko, 2014). Recently, algebraic methods have also been used to 81 

determine when hybridisation between species is likely to have occurred (Blischak et 82 

al. 2018) and combined with statistical learning techniques to infer small semi-83 

directed networks (Barton et al. 2022). In this paper, we investigate a method for 84 

determining 4-leaf semi-directed networks that uses algebraic invariants for “group-85 

based” models of evolution, namely, the Jukes-Cantor (JC) model, and the Kimura 2-86 

X. pygmaeusX. corteziX. malincheX. birchmanni

X. andersiX. xiphidium

X. evelynae X. gordoni
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parameter (K2P) model. By identifying the state space of the four nucleic acids with 87 

a mathematical structure called a group, group-based models enable a Fourier 88 

transformation of the parameter space that simplifies the equations defining the 89 

model. This, and their low number of parameters, makes them amenable to the 90 

algebraic methods we use here. Furthermore, these models are commonly used to 91 

model nucleotide substitution in the presence of reticulate evolution (for example 92 

(Kong et al. 2024; Burbrink and Gehara 2018)). 93 

As well as performing extensive simulations to understand the performance of the 94 

method under various models, we show that it can be used to distinguish between 95 

tree-like and non-treelike evolution. We also compare our method with the QNR-96 

SVM method (Barton et al. 2022) and employ our method on a real data set that has 97 

been previously analysed using semi-directed networks in (Solís-Lemus, Ané, 2016) 98 

and separately in (Blischak et al. 2018) to compare its performance with these 99 

methods.  100 

 101 

2. Materials and Methods 102 

2.1 Background 103 

For a rooted phylogenetic network, its semi-directed network is the mixed 104 

graph obtained by unrooting the network and undirecting all edges except for the 105 

reticulation edges. For the nucleotide substitution models we define on rooted 106 

phylogenetic networks, only the semi-directed network is identifiable from the leaf-107 

pattern distribution (also called the marginal character distribution), that is, the 108 

distribution of nucleotides observed at the leaves (Gross et al. 2021). This is 109 

analogous for the case for phylogenetic trees, where, under the nucleotide 110 

substitution models we use, only the unrooted tree topology is identifiable from the 111 
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leaf-pattern distribution. Here, we only consider level-1 phylogenetic networks. 112 

These are phylogenetic networks in which the reticulation vertices are sufficiently far 113 

away from each other. More precisely, they are phylogenetic networks in which the 114 

undirected cycles do not overlap. 115 

We place a model of nucleotide substitution on a rooted phylogenetic network 116 

in the form of a directed graphical model, by assigning a transition matrix to each 117 

edge in the network (where each entry in the matrix is the probability of a particular 118 

nucleotide substitution occurring along that edge), a distribution of nucleotides at the 119 

root of the network (for us this will be the equilibrium distribution of the model), and 120 

for each reticulation vertex, the probability that a particular position is inherited along 121 

either reticulation edge. We refer to this final parameter as the ”tree-ratio”, because 122 

when it is either 0 or 1, the model becomes that of an unrooted tree. From this model 123 

we can obtain expressions for the probability of observing the leaf-patterns (or 124 

marginal characters) of the network. Each leaf-pattern is a sequence of nucleotides 125 

that can be observed at the leaves of the network at a single position in a sequence 126 

alignment.  127 

By considering the numerical parameters of the model as free variables, we 128 

think of the distribution of leaf-patterns as a multi-dimensional polynomial function. 129 

These functions are complicated, but they can be simplified if we use certain 130 

evolutionary models called “group-based” models (see e.g., Chapter 15 of Sullivant, 131 

2018 for further details). For 4-state nucleotide models, there are three well known 132 

group-based models: the Jukes Cantor model (JC), the Kimura 2-parameter model 133 

(K2P), and the Kimura 3-parameter model (K3P). In each case, a Fourier 134 

transformation can be applied to the model that makes the transformed expressions 135 

for the distribution of marginal characters much simpler, although it is no longer 136 
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probabilistic. These transformations were first described for phylogenetic trees in 137 

(Evans, Speed 1993) and (Hendy, Penny, 1996), where the transformed distribution 138 

functions are monomial (a polynomial with a single term), which makes them 139 

especially amenable for algebraic study, and indeed, these models have been well 140 

studied from an algebraic perspective (e.g., Sturmfels, Sullivant, 2005; Allman et al. 141 

2011). 142 

 From an algebraic perspective, we view the phylogenetic tree or network and 143 

substitution model as an algebraic variety (see e.g. Cox et al. 2007 for an 144 

introduction). This object can be thought of as a high-dimensional surface, and 145 

consists of all possible distributions of leaf-patterns that can be observed from the 146 

model. Recent study of these objects has given identifiability results. For the JC 147 

model, it was shown that the semi-directed network topology of large cycle networks 148 

is generically identifiable from the distribution of leaf-patterns (Gross, Long, 2018). 149 

Analogous results have been proven for the K2P and K3P evolutionary models 150 

(Hollering, Sullivant, 2021), and for all three evolutionary models on level-1, triangle-151 

free phylogenetic networks (Gross et al. 2021). Further algebraic properties have 152 

been determined for any triangle-free level-1 network under any group-based model 153 

(Gross et al. 2024). In particular, for group-based evolutionary models, it is not 154 

possible to identify the reticulation vertex in a 3-cycle from the leaf-pattern 155 

distribution (Gross et al. 2021). More recently, for the JC model the triangle-free 156 

property on level-1 networks has been relaxed to enable identifiability of the number 157 

of reticulation vertices in a level-1 network, up to placement of reticulation vertices on 158 

triangles, and identifiability results on some classes of level-2 phylogenetic networks 159 

have been obtained (Englander et al. 2025). 160 
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Algebraic invariants (also called phylogenetic invariants) are polynomial 161 

functions that evaluate to 0 on all points of an algebraic variety given by a fixed 162 

phylogenetic network and model of evolution. (Note that the term “phylogenetic 163 

invariants” is sometimes used to mean only those algebraic invariants that belong to 164 

exactly one tree or network, as in (Casanellas, Fernández-Sánchez, 2007).) They 165 

can be used to determine whether a set of data could have been produced by a 166 

given network without the need for parameter estimation. One of the most well-167 

known examples of algebraic invariants are the edge invariants (Allman, Rhodes, 168 

2007). These encode the set of splits in a phylogenetic tree from which the full tree 169 

can be reconstructed and give rank conditions on certain matrices called flattening 170 

matrices. In some circumstances, rank conditions on flattening matrices have been 171 

shown to also hold for phylogenetic networks (Casanellas, Fernández-Sánchez, 172 

2021). The use of rank conditions on flattening matrices to reconstruct phylogenetic 173 

trees from sequence data was employed in the software SVDQuartets (Chifman, 174 

Kubatko, 2014). 175 

Algebraic invariants have also been used to infer 4-leaf trees from simulated 176 

data under the K3P model (Casanellas, Fernández-Sánchez, 2007), and 4-leaf 177 

networks under the JC model (Barton et al. 2022). Used as a method of inferring tree 178 

or network topologies from aligned sequence data, they have several advantages. 179 

First, finding the invariants for a fixed phylogenetic tree or phylogenetic network and 180 

model of evolution need only be done once. For small trees, many invariants have 181 

already been calculated and are available online (Casanellas, Garcia, Sullivant, 182 

2005). Second, using invariants is a statistically consistent method to infer an 183 

unrooted phylogenetic tree or semi-directed network topology, provided that an 184 

appropriate set of invariants are used. Third, once the invariants have been 185 
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calculated, applying the method to a dataset is simply a case of evaluating a fixed 186 

number of polynomials, and so can be performed quicker than many other 187 

statistically consistent methods, such as maximum likelihood. 188 

Here, we investigate the practical identifiability of semi-directed networks and 189 

the effectiveness of using algebraic invariants for network inference under the JC 190 

and K2P nucleotide substitution models. We present a new algorithm to infer the 4-191 

leaf, 4-cycle network (also called a 4-sunlet network, a directed example of which is 192 

depicted in Figure 2) from aligned sequence data using algebraic invariants. The 193 

algorithm is based on that developed for 4-leaf trees in (Casanellas, Fernández-194 

Sánchez, 2007). The 4-leaf, 4-cycle network has particular biological relevance in 195 

that it can represent the evolutionary relationship between two species, their hybrid, 196 

and an outgroup; and it is generically identifiable from leaf-pattern data. Furthermore, 197 

knowledge of all the networks restricted to 4-taxa subsets, called ‘quarnets’, is 198 

sufficient to rebuild a (level-1) phylogenetic network. When the network is assumed 199 

to be triangle-free, we need only 4-cycles and 4-leaf trees to rebuild the network 200 

(Huber et al. 2025; Frohn et al. 2025). 201 

 202 !

"

# $
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Figure 2. A directed cycle network with cycle of length 4. Dashed edges represent 203 

reticulation edges. The root vertex is highlighted in orange. This topology could 204 

represent the evolutionary history between taxa where 𝑎 is a hybrid species resulting 205 

from a hybridisation event between taxa 𝑏 and 𝑑, whilst 𝑐 is an outgroup. 206 

 207 

 208 

2.2 Algorithm to Infer Phylogenetic Network Topology from Aligned Sequence Data 209 

We developed an algorithm that utilises phylogenetic invariants to infer the 210 

correct 4-leaf, 4-cycle network from a multiple sequence alignment (MSA) of 4 taxa. 211 

We use the notation (𝑎𝑏𝑐𝑑) to denote the 4-leaf 4-cycle network with taxon “𝑎” at the 212 

leaf below the reticulation vertex and taxa “𝑏”, “𝑐”, and “𝑑” at the leaves going anti-213 

clockwise from “𝑎” (as in Figure 2). There are 12 = 4!
2,  possible 4-leaf 4-cycle 214 

networks, since (𝑎𝑏𝑐𝑑) and (𝑎𝑑𝑐𝑏) represent the same 4-cycle. Note that for each 215 

network the underlying semi-directed graph is the same, but the taxa labels at the 216 

leaves are permuted. 217 

Each of the 4-leaf, 4-cycle networks is represented by a “surface” giving the 218 

leaf-pattern distributions that can be obtained from that network and substitution 219 

model. From an MSA from 4 taxa we obtain an empirical leaf-pattern distribution, 220 

and we use algebraic invariants to determine how close this is to each of the 221 

surfaces. A depiction of this process is given in Figure 3. 222 

First, using the software Macaulay2 (Grayson, Stillman), we calculated 223 

invariants for the 4-leaf, 4-cycle phylogenetic network depicted in Figure 2, for the JC 224 

and K2P models. Full details on how these were calculated and which invariants 225 

were chosen are given in the supplementary materials. We now briefly describe our 226 

algorithm for inferring a phylogenetic network topology from aligned sequence data. 227 
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Further details and a full description are given in the supplementary materials. For a 228 

given MSA, we score each of the twelve semi-directed network topologies by 229 

permuting the sequences in the MSA, applying the Fourier transform to the 230 

corresponding leaf-pattern distribution, and then applying invariants to the result. The 231 

first step is to read the alignment and count the number of columns that occur for 232 

each leaf-pattern. This gives us an empirical leaf-pattern distribution which we store 233 

as a single vector 𝑝. The next step is to transform 𝑝 using the Fourier transformation, 234 

giving us a new vector 𝑞. 235 

Our algorithm next reads in a file of invariants that have undergone the 236 

Fourier transformation as above, and we evaluate each invariant at the vector 𝑞. This 237 

gives us a list of numbers from which a score for the corresponding network is given. 238 

As in (Casanellas, Fernández-Sánchez, 2007) we found that scoring using the 1-239 

Norm gave us the best results. In this case, the score for network 𝒩 is given by the 240 

formula 241 

𝑆𝒩 =	2 |𝑓(𝑞)|
"∈$

, 242 

where 𝐺 is a set of invariants, and 𝑞 is the transformed data point obtained from the 243 

permuted MSA. Once each network has been scored, the networks are ordered by 244 

score in ascending order, and the network with the smallest score is chosen as the 245 

one most likely to have generated the data. 246 

 247 
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 248 

Figure 3. A. Each leaf-labelled, semi-directed network is converted into a high-249 

dimensional “surface” in a high-dimensional space (depicted here as a 2D surface in 250 

a 3D space), representing all leaf-pattern distributions possible from the model. B. 251 

An MSA is converted into a point 𝑞 in this space, and this lies exactly on the surface 252 

(i.e., the alignment could have been generated by the model) if and only if 𝑓(𝑞) = 0 253 

for all invariants 𝑓. Since each 𝑓 is a continuous polynomial, for points 𝑞 close to the 254 

surface, 𝑓(𝑞) will be close to 0. Depiction of the surface was created using 255 

CalcPlot3D available at https://c3d.libretexts.org/CalcPlot3D/index.html. 256 

 257 

It is common to infer phylogenetic trees or networks from a single MSA. In this 258 

case, it is desirable to have an idea of the confidence a tool has in its inference. 259 

Bootstrap support (Felsenstein, 1985) is a popular method of providing confidence 260 

intervals for phylogenetic inferences. Here, we sample with replacement many times 261 

from the original data to create new datasets with similar properties. In our case, we 262 

expect the new datasets will have leaf-pattern distributions close to that of the 263 
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original dataset. We implemented a separate version of our script with inbuilt support 264 

for parallelised bootstrapping. We applied our bootstrap method to real transcriptome 265 

data from 24 swordtail fish and platyfish species (genus Xiphophorus) and two 266 

outgroups (Pseudoxiphophorus jonesii and Priapella compressa), by independently 267 

assessing each subset of 4 taxa. The transcriptome data was generated in (Cui et al. 268 

2013) and alignments were kindly provided to us by the authors of (Blischak et al. 269 

2018). 270 

We implemented our inference algorithm in a python script evaluate.py, (and 271 

with bootstrap in evaluate_bootstrap.py) along with a python library for 272 

reading, writing, and evaluating phylogenetic invariants. These are available from the 273 

GitHub repository https://github.com/SR-Martin/4cycle_invariants. 274 

 275 

3. Results 276 

In this section we evaluate our method on simulated data, compare its 277 

performance to QNR-SVM, and demonstrate its utility on real data. All data was 278 

simulated using the simulation scripts available on the GitHub page. Unless 279 

otherwise stated, the results in this section are obtained using invariants from the 280 

appropriate model, as described in the supplementary materials. 281 

 282 

3.1 Simulated 4-leaf 4-cycle data 283 

We generated MSA data from each of the twelve distinct leaf permutations of the 284 

directed network depicted in Figure 2, each of which has a semi-directed network 285 

identifiable from leaf-pattern data. For each network we generated 100 MSAs of 286 

lengths 1kbp, 10kbp, 100kbp, 1Mbp, and 10Mbp under both the JC and K2P models. 287 

For each edge, substitution rates were generated uniformly at random in the interval 288 

https://github.com/SR-Martin/4cycle_invariants
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(0, 0.1) for JC, and (0, 0.15) for K2P. The tree ratio (𝛾) was fixed at 0.5. Each MSA 289 

was assessed using the algorithm described in Section 2.2, and in each case the 4-290 

cycle topology with the lowest score was taken as the “inferred network”. Figure 4.A 291 

shows the confusion matrices for these datasets for the JC model, and Figure 4.B 292 

shows the confusion matrices for the K2P model. In both cases we see that we 293 

approach 100% true positive and 0% false positive rates as the sequence length 294 

approaches 10Mbp. Furthermore, we can see the set of 4-leaf 4-cycle networks is 295 

partitioned into three sets, where in each set the circular order is the same (e.g., the 296 

first set is given by (0123), (1230), (2301), and (3012)). Figures 4.A and 4.B show 297 

that at lengths of 1kbp, we can identify the correct circular order with close to 100% 298 

true positive rate. In this case, identifying the circular order is equivalent to identifying 299 

the undirected phylogenetic network. 300 

 301 

A.

B.

C.

D.
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Figure 4. A. Confusion matrices for inference of 4-leaf, 4-cycle networks from data 302 

simulated under the JC model. B. Confusion matrices for inference of 4-leaf, 4-cycle 303 

networks from data simulated under the K2P model. C. Distribution of scores from 304 

data generated by the network (0123) under the JC model. D. Distribution of scores 305 

from data generated by the network (0123) under the K2P model 306 

 307 

We found a clear distinction between scores for the true network, and scores for the 308 

other networks. Figure 4.C and D show the distribution of scores obtained for each 309 

network when the true network was (0123), under the JC and K2P models 310 

respectively. Again, we can see that scores for networks with the correct circular 311 

order are smaller than scores for all others from 1kbp. At each alignment length we 312 

see that the mean score of the true network is smaller than the mean scores of all 313 

others, suggesting a bootstrap approach might be beneficial (see Section 3.7). At 314 

1Mbp there is no overlap between the interquartile range of scores for the true 315 

network and the interquartile range of scores for all other networks. By 10Mbp, this 316 

effect is more pronounced, and the score for the true network is smaller than the 317 

scores for other networks with the same circular order. 318 

 319 

3.2  Varying the tree ratio 320 

We generated further datasets where the 4-leaf, 4-cycle network was fixed and 321 

the tree ratio 𝛾 was varied from 0.0 to 1.0 in intervals of 0.05. As before, we 322 

generated 100 MSAs of length 1kbp, 10kbp, 100kbp, 1Mbp, and 10Mbp for both JC 323 

and K2P models. Figure 5 shows the number of correctly inferred networks in each 324 

case for the JC model (5.A) and K2P model (5.B). Observe that when 𝛾 = 0 or 1 we 325 

obtain a low percent of correctly identified networks regardless of MSA length, 326 
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because in this case the data is from a phylogenetic tree, and there is not a unique 327 

semi-directed phylogenetic network that could have produced it. 328 

 329 

Figure 5. A. Percent of tree-ratio datasets where the network was correctly identified 330 

(left) and average score over all datasets that the correct network achieved (right) for 331 

JC. B. Analogous plots for K2P datasets. 332 

 333 

3.3  Identification of Treelike versus Non-treelike Evolution 334 

In many cases, it may not be known whether a set of taxa has undergone 335 

reticulate evolution or not. In this section, we focus on using our method to determine 336 

whether data from four taxa has been generated from a tree (treelike) or a 4-leaf, 4-337 

cycle network (non-treelike).  338 

A.

B.
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To do this, we make the following observation: for a fixed model of evolution, 339 

the model for a 4-leaf unrooted tree is contained in the models of the eight 4-leaf, 4-340 

cycle networks that display the tree, and is not contained in the remaining four. A 341 

diagram showing these containments for the 4-leaf tree ((1,2), (3,4)) can be found in 342 

Supplementary Figure S5. Therefore, if a set of data is generated by a tree, we 343 

expect the score that this data obtains via our invariants method to be low for 8 of 344 

the networks, and high for the remaining 4 networks. Furthermore, from the partition 345 

of the networks by their scores we can determine which unrooted tree generated the 346 

data. The scripts evaluate.py and evaluate_bootstrap.py automatically 347 

search for this signature and inform the user when it has been found. 348 

We found that this signature is identifiable even for short alignment lengths 349 

(see Figure 6.C). In this case, when 𝛾 = 0, evolution has been treelike, along a tree 350 

which we refer to as tree 1. When 𝛾 = 1, evolution has also been treelike, along a 351 

different tree which we refer to as tree 2. In all other cases evolution has been non-352 

treelike. Figure 6.A shows that for the data simulated under the JC model, we 353 

approach a 100% true positive rate and 0% false positive rate for alignments of 354 

length 10Mbp. Figure 6.B shows a similar picture for the data simulated under the 355 

K2P model. 356 



S. Martin, N.Holtgrefe, V. Moulton, R.M. Leggett 

 357 

Figure 6. A. Percent of JC datasets identified as evolving along either tree 1 or tree 358 

2.  B. Percent of K2P datasets identified as evolving along either tree 1 or tree 2. C. 359 

Scores assigned to networks generated along tree 1 (i.e. 𝛾 = 0) under the JC model. 360 

The low scores of eight of the networks are clearly identifiable. D. Scores assigned 361 

to networks generated along tree 1 under the K2P model. 362 

 363 

3.4 Assessment against QNR-SVM 364 

 We assessed our method against the QNR-SVM method presented in Barton 365 

et al. (2022). This method uses a support vector machine to analyse the residuals 366 

from a set of phylogenetic invariants, one for each identifiable semi-directed 367 

phylogenetic network topology on 4 leaves. In particular, the method can identify 368 

undirected 3-cycles (that is, quarnets that contain 3-cycles in which the reticulation 369 

vertex is not identified). We assessed our method on the simulated data available in 370 

A.

B.

C.

D.
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Barton et al. 2022, from the three unrooted 4-leaf tree topologies (networks 1,2, and 371 

3 in Barton et al. 2022), the twelve 4-cycle topologies (networks 10-22), the six 372 

topologies with a single 3-cycle (networks 4-9), and the 3 topologies with two 3-373 

cycles (networks 22-24). The data was simulated under a JC model with branch 374 

lengths of cycle and cycle-adjacent edges chosen uniformly at random between 0.05 375 

and 0.2, and branch lengths of all other edges chosen uniformly at random between 376 

0.05 and 0.4. The tree-ratio parameter 𝛾 was chosen uniformly at random between 377 

0.25 and 0.75, and the alignment length was 1Mbp. The results of our method on 378 

this data are displayed in Figure 7. 379 

 380 

Figure 7. A. Confusion matrix for analysis of datasets from Barton et al. (2022). The 381 

first three columns are datasets simulated from phylogenetic trees. The next 12 382 

A.

B.
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columns are from 4-leaf 4-cycle networks. The next 6 columns, labelled network 4 to 383 

9 are 3-cycle networks. The final 3 columns are double 3-cycle networks. (See 384 

Figure 5 of Barton et al. 2022). Each column represents 200 datasets. B. Scores for 385 

each 4-cycle network on data from (left) a single 3-cycle (network 4) and (right) a 386 

double 3-cycle (network 22). 387 

 388 

 We found that on trees and 4-cycles, our method gives very similar results to 389 

those in Barton et al. (2022) (see Figure 5 therein), with all topologies being 390 

identified at close to 100% true positive rate. In particular, here we are able to 391 

correctly identify a higher proportion of the 4-leaf trees (lower left box in Figure 7) 392 

than in Barton et al. 2022. However, we note that here we do not attempt to identify 393 

phylogenetic networks containing 3-cycles, and these accounted for many of the 394 

false-positives for the 4-leaf tree data in Barton et al. (2022). Observe that the 395 

convergence of our method on this data is an order of magnitude better than the 396 

simulated data in Section 3.1. 397 

We do not attempt to identify topologies with 3-cycles, since the placement of 398 

the reticulation vertex is not identifiable. However, it is helpful to know how our 399 

method performs in these cases. In most cases we infer the 4-leaf tree obtained by 400 

collapsing the 3-cycle to a single point (Figure 7.A). Inspection of the scores reveals 401 

a similar situation to the scores on tree topologies in Section 3.3, where particular 402 

topologies consistently score lower than others (Figure 7.B). 403 

 404 

3.5  Data simulated under the general Markov model 405 

 Although computationally tractable, the JC and K2P evolutionary models are 406 

restrictive in terms of the substitution rates they allow, and may not accurately reflect 407 
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real-world processes. We assessed our method on data simulated under the general 408 

Markov model, which places no restrictions on the form of the transition matrices 409 

placed along edges in our network. This model is also known as the unrestricted 410 

(UNREST) model (Yang 1994). As before, we simulated 100 MSAs of length 1kbp, 411 

10kbp, 100kbp, 1mbp, and 10mbp, from the 4-leaf 4-cycle network (0123) (as in 412 

Figure 2). For each MSA, transition matrices and the root distribution were randomly 413 

generated. To maintain biological plausibility, each transition matrix had substitution 414 

rates generated independently at random from a uniform distribution between 0% 415 

and 5% (with diagonal entries ensuring the row sum equals 1). The first three entries 416 

of the root distribution were generated independently at random from a uniform 417 

distribution between 20% and 30%, with the final entry ensuring they summed to 1. 418 

In all cases we set the tree ratio 𝛾 = 0.5. 419 

 420 

We assessed each dataset using both the JC and K2P invariants from the previous 421 

sections. The results are displayed in Figure 8. In both cases the true network 422 

becomes the lowest scoring network as the MSAs get longer, up to a rate of 99% for 423 

the MSAs of length 1mbp when using the JC invariants (Figure 8.A). As with our 424 

previous simulations, we find that networks with the correct circular order score lower 425 

than others (Figure 8.B). For both sets of invariants, the scores for these networks 426 

show good separation from the scores for other networks, particularly for the K2P 427 

invariants. However, unlike in our previous simulations, the score of the true network 428 

is not substantially less than others with the same circular order, making it more 429 

difficult to place the reticulation vertex correctly. 430 

 431 
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 432 

Figure 8. A. The percent of datasets for which the true network has the lowest score 433 

when assessed with the JC and K2P invariants. JC invariants appear to perform 434 

better than K2P invariants. B. Boxplots of the scores for each network for JC (first 435 

row) and K2P (second row). Scores for the networks with the correct circular order 436 

are noticeably lower than others, particularly for the K2P invariants. 437 

 438 

3.6  Data simulated under the network multispecies coalescent model 439 

 For a group of species whose evolution is described by a phylogenetic 440 

network, gene tree discordance can be caused by genes that evolve along different 441 

trees displayed by the species network. However, gene tree discordance can also be 442 

caused by phenomena such as incomplete lineage sorting. This is modelled by the 443 

multispecies coalescent model (MSC), which given a species tree, describes a 444 

distribution of gene trees that could be produced by that species tree (Rannala et al. 445 

2020). The network multispecies coalescent model (NMSC) extends the MSC model 446 

A.

B.
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to allow for species networks that describe events such as hybridisation (Degnan 447 

2018). This model is also known as the multispecies coalescent with introgression 448 

(MSci) model (Jiao et al.2021). 449 

 In our approach, we model evolution at a single molecular site on a level-1 450 

phylogenetic network, and assume all sites are independent and identically 451 

distributed. We therefore do not model the effects of incomplete lineage sorting. 452 

Nonetheless we find that our method has some robustness to data simulated under 453 

the NMSC model, and is still able to predict the correct undirected network in many 454 

cases. 455 

 We simulated 1,000 gene trees under the NMSC model for each of the three 456 

directed networks in Figure 9.A, using PhyloCoalSimulations (Fogg et al. 2022). 457 

Each network represents the history of four species for which a single hybridisation 458 

event occurred, and in each case the corresponding semi-directed network is the 4-459 

leaf 4-cycle network (0123). The first two networks are ultrametric (all paths from the 460 

root to each leaf have equal length). For each network we performed 5 sets of 461 

simulations, by scaling all edge lengths in the network by 0.1, 0.5, 1, 5, and 10. Here, 462 

edge lengths are in coalescent units, with shorter edges resulting in a larger gene 463 

tree discordance effect coming from incomplete lineage sorting, and longer edges 464 

resulting in a larger gene tree discordance effect coming from the hybridisation 465 

event. 466 

 Next, for each set of gene trees we simulated 10 independent multiple 467 

sequence alignments under the JC model using AliSim (Ly-Trong et al. 2022). Here, 468 

each gene had length 1,000bp and the sequences from all 1,000 genes were 469 

concatenated, for a total length of 1mbp. To convert from coalescent units to 470 

expected number of mutations we assumed an effective population size 𝑁% = 10&, 471 
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and a mutation per generation rate 𝜇 = 10'(. The exact commands we used for 472 

simulation can be found in the Supplementary Materials. 473 

 Each MSA was then assessed using our method. We found that when the 474 

length from root to tip was at least 1 coalescent unit, we could reliably determine the 475 

undirected network, and at 10 coalescent units we could determine the semi-directed 476 

network (Figure 9.B). As branch lengths got shorter, this was less certain; for 477 

networks 1 and 3 we still obtained the correct undirected network, but for network 2 478 

we did not (Figure 9.B). 479 

 480 

 481 

Figure 9. A. Three different rooted network topologies, produced using PhyloPlot 482 

(Ané 2022). B. Histograms of the scores from our method. Each column corresponds 483 

to the scores obtained on the network in that row, with edge lengths multiplied by 484 

0,1, 0.5, 1, 5, and 10 coalescent units (CU) respectively. Each plot shows box plots 485 

of the score for each of the 12 semi-directed networks over 10 simulated alignments 486 

of length 1mbp. 487 

A. B.
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 488 

3.7  Inference of networks from real datasets with many taxa 489 

Here we demonstrate the utility of our method on aligned transcriptome data 490 

from 24 swordtail fish and platyfish species (genus Xiphophorus) and two outgroups 491 

(Pseudoxiphophorus jonesii and Priapella compressa), generated in (Cui et al. 492 

2013). Each of the Xiphophorus species belongs to one of three distinct clades; 493 

southern swordtails, northern swordtails, and platyfishes (split further into southern 494 

platyfishes and northern platyfishes). Since our method is restricted to four taxa, we 495 

looked at each subset of four taxa individually, giving a total of 14,950 subsets. The 496 

data consists of 10,999 alignments, each of length at least 500bp, for a total 497 

alignment length of 16.85Mbp. Since we do not use positional information, we 498 

concatenated all alignments into a single alignment. Next, we extracted the 499 

concatenated alignment for each subset of four taxa. Each of these subsequent 500 

alignments was analysed by our bootstrap method, with 100 bootstrap replicates in 501 

each case, using the K2P invariants (see below for rationale). Here, we ignore 502 

columns in the alignment containing the gap character “-”.  Without gaps, alignments 503 

between subsets of four taxa ranged between 180kbp and 3.37Mbp. 504 

We then used the software Squirrel (Holtgrefe et al. 2025) to create a level-1 505 

phylogenetic network displaying the relationships between all 24 Xiphophorus 506 

species. Squirrel is a new approach that can take as input the quarnets computed 507 

using the method presented here to build larger level-1 (triangle-free) phylogenetic 508 

networks on many taxa. When constructing cycles of length greater than 4 in this 509 

network, Squirrel uses only the circular ordering of the 4-sunlets, and not the position 510 

of the reticulation. In the previous section, we found that the K2P invariants were 511 
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most likely to determine the correct circular ordering on data generated under the 512 

general Markov model (Figure 8.B), so we chose to use these invariants. 513 

Of the 14,950 4-taxa subsets, 7,028 (47%) had 100% bootstrap support for a 514 

particular tree (6,175) or 4-cycle (853) topology, and 8,982 (60.1%) had at least 90% 515 

support for a particular tree (6,325) or 4-cycle (2,657) topology. Almost all (14,561) 516 

had at least 50% support for a particular tree (6,459) or 4-cycle (8,102) topology, 517 

consistent with widespread hybridisation between Xiphophorus species, as 518 

demonstrated in previous analyses of this dataset (Cui et al. 2013; Solís-Lemus and 519 

Ané 2016; Blischak et al. 2018). The bootstrap results show that the inference of 4-520 

cycles is less certain than the inference of trees, likely due to the difficulty in placing 521 

the reticulation vertex, which we observed in Section 3.1. The full results for all 4-522 

subsets are available in the Supplementary data. 523 

Next, we created a level-1 phylogenetic network using an adapted version of 524 

the software Squirrel. For input, we gave Squirrel the highest-supported tree or 4-525 

cycle network from each 4-subset, and these were weighted by the corresponding 526 

support value. Squirrel allows exactly one taxon to be designated the outgroup in 527 

order to root the network. We designated P. compressa as the outgroup, and 528 

therefore excluded all subsets containing Ps. jonesii. The network produced by 529 

Squirrel is displayed in Figure 10. It shows clear separation between the clades 530 

(although the Southern Swordtails do not form a monophyletic group) and is in 531 

agreement with that produced in (Solís-Lemus and Ané 2016, see Figure 10 therein). 532 

In particular, we find a reticulation event between Xiphophorus xiphidium and the 533 

Northern Swordtail clade, exactly as described in (Solís-Lemus and Ané 2016) and 534 

also reported in (Blischak et al. 2018). We also find further reticulation within the 535 

Northern Swordtail clade, in line with the results of Cui et al. (2013). For example, 536 
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they constructed two trees that placed Xiphophorus nezahualcoyotl as sister to 537 

Xiphophorus cortezi and Xiphophorus montezumae respectively. Here, we find a 538 

reticulation event enabling both placements. 539 

 540 

Figure 10. The level-1 phylogenetic network produced by Squirrel, using the 541 

bootstrap-supported quarnets from Xiphophorus data. Dashed red lines indicate 542 

reticulation edges. 543 

 544 

3.8  Timings 545 

Figure 11 shows the time taken and maximum memory usage for the analysis 546 

of the simulated data from Section 3.1. Each analysis was run on a single CPU with 547 

8GB of RAM. Since each dataset is evaluated on a fixed set of invariants (that have 548 
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been pre-computed and are stored in a text file), most of the time is taken on reading 549 

the alignments and counting leaf patterns to obtain the empirical leaf-pattern 550 

distribution, and then performing a Fourier transform of this data. The time therefore 551 

scales with the length of the alignment. Shorter alignments perform quickly 552 

(seconds), but longer alignments can take several minutes. Memory usage scales 553 

with alignment length, as the whole alignment is loaded into memory to calculate the 554 

empirical distribution of leaf-patterns. However, this is not necessary and could be 555 

improved so that memory usage was fixed by reading alignments piecewise.  556 

 557 

 558 

Figure 11. Timings and max memory usage for simulated JC data (Section 3.1) split 559 

by alignment length. 560 

 561 
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 562 

4 Discussion 563 

We have developed a novel method for inferring a semi-directed network 564 

topology from aligned sequence data between four taxa. We demonstrate its use in 565 

identifying 4-leaf 4-cycle networks from simulated data, and in identifying whether 566 

reticulate evolution is likely to have occurred. We have shown that we can identify 567 

the undirected network with sequences of length 1kbp but require longer sequences 568 

(up to 10Mbp) to determine which vertex is the reticulation vertex and thereby 569 

identify the semi-directed network. Furthermore, we show that our method can detect 570 

when evolution between taxa has been treelike, converging quickly to a high true 571 

positive rate and low false negative rate as alignment length increases.  572 

On simulated data we observe a rate of convergence that is much less than the 573 

analogous rate for trees. In (Casanellas, Fernández-Sánchez,  2007), the authors 574 

observe almost 100% accuracy for alignments of length 10kbp on 4-leaf trees under 575 

the K3P model. For 4-leaf, 4-cycle networks under the JC and K2P models, we do 576 

not achieve 100% accuracy until alignment lengths are in the order of 10Mbp. 577 

However, for alignments of length at least 1kbp, we were able to infer with high 578 

accuracy the correct circular ordering of 4-leaf 4-cycle networks and thereby 579 

determine the undirected network. There are three circular orderings possible, each 580 

corresponding to a choice of two out of three 4-leaf unrooted trees displayed by the 581 

network. Thus, when restricting to undirected networks, our results are comparable 582 

to those in (Casanellas, Fernández-Sánchez, 2007). Locating the correct reticulation 583 

vertex appears to be the main difficulty. We conjecture that the leaf-pattern 584 

distribution varieties of 4-leaf 4-cycle networks with the same circular ordering are 585 

close together geometrically. The scores displayed in Figure 4.C and 4.D support 586 
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this, and this makes inference difficult. The varieties corresponding to any two 4-leaf-587 

4-cycle networks contain exactly one variety corresponding to a phylogenetic tree in 588 

their intersection, and so for data where the tree ratio is close to 0 or 1, the true 589 

semi-directed network topology will be more difficult to infer. This can be observed in 590 

Figure 6. 591 

We compared our method with the QNR-SVM method in (Barton et al. 2022) and 592 

found the performance of our method comparable with theirs on trees and 4-cycles, 593 

with true positive and false positive rates very similar. Unless it is known that a 594 

dataset is similar to data used in the pretrained QNR-SVM model, to use QNR-SVM 595 

one must first train the model on the data. The method we present has the 596 

advantage that it does not require training and is therefore much quicker to run. We 597 

found that the convergence of our method was an order of magnitude better on the 598 

QNR-SVM data than on our own simulated data sets, with a true positive rate of 599 

almost 100% being achieved on data from alignments of length 1Mbp. The main 600 

difference in the two datasets is that the QNR-SVM 4-leaf 4-cycle networks are less 601 

symmetric, with branch lengths having different ranges depending on the branch. A 602 

better understanding of the geometry and how this corresponds to the parameter 603 

space may enable faster convergence. 604 

Since we do not attempt to identify 3-cycle topologies, we were unable to 605 

identify the correct topology for the data in (Barton et al. 2022) generated from 3-606 

cycle topologies. Nonetheless, we analysed this data using our method and 607 

inspected the results. In most cases our method inferred the 4-leaf tree obtained by 608 

collapsing the 3-cycle(s) to a single vertex (Figure 7.A). When subsequently building 609 

a phylogenetic network using Squirrel, this will not affect the result, since Squirrel will 610 

collapse 3-cycles to a single vertex on all input quarnets. We found that for each 3-611 
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cycle topology, particular 4-cycles scored consistently lower than others, much like 612 

the case for 4-leaf trees in Section 3.3. For the networks with a single 3-cycle, this is 613 

expected, since, under the JC substitution model, each 3-cycle model is contained in 614 

exactly four of the 4-cycle models (see Figure 10 of (Gross, Long, 2018)). The 615 

distribution of scores in this case lies somewhere between the distribution for 4-616 

cycles (Figure 4.C) and the distribution for trees (Figure 6.C), which agrees with the 617 

containment results. Thus, a very careful analysis of the scores here may enable us 618 

to determine quarnets containing a single 3-cycle, in a similar way to how we 619 

determine treelike evolution. For the topologies with two 3-cycles however, we do not 620 

have the same containment of models, so the results here are less clear. The 621 

distribution of scores in this case was closer to that of the 4-leaf trees. Further work 622 

is needed to determine whether we can identify these topologies from the 4-cycle 623 

scores. 624 

We also assessed our method on data simulated under different models. 625 

Under the general Markov substitution model, we found that both sets of invariants 626 

performed well when inferring only the undirected network, but placement of the 627 

reticulation vertex was less reliable, even for longer alignments. Under the network 628 

multispecies coalescent model, we found that our method has some robustness to 629 

incomplete lineage sorting when this was not the main source of gene tree 630 

discordance, and was able to pick out the correct semi-directed network. In some 631 

cases, even when incomplete lineage sorting was the main source of gene tree 632 

discordance, our method was able to determine the correct undirected network. 633 

Our method looked at small networks with 4 taxa. In principle, one can apply the 634 

same method to larger networks with more taxa, but the problem of calculating 635 

invariants for larger networks is currently intractable. Alternatively, one could 636 
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construct a larger network by computing networks on smaller numbers of taxa and 637 

puzzling them together to make larger networks (see e.g. (Huber, Moulton, 2013; 638 

Oldman et al. 2016) where directed networks are constructed from 3-leaf networks).  639 

Recently, we made some progress in this direction for semi-directed networks by 640 

developing a new approach that can take as input the quarnets computed using the 641 

method presented here to build larger level-1 (triangle-free) phylogenetic networks 642 

on many taxa, or directly from MSAs using a heuristic based on statistical geometry 643 

(Holtgrefe et al. 2025). This approach is implemented in the software Squirrel. Here. 644 

we applied our new method, combined with bootstrapping, to aligned transcriptome 645 

data from swordfish species and used the results as input for Squirrel to create a 646 

level-1 phylogenetic network. This network displayed previously identified 647 

hybridisation events and was largely consistent with previous analyses. 648 

Bootstrapping enabled us to give confidence intervals to the tree or 4-leaf 4-cycle 649 

networks we inferred, which we then used as weights for the corresponding network 650 

when given to the software Squirrel. However, we are only able to give the single 651 

most supported topology for each 4-subset to Squirrel. This means that information 652 

on other topologies that might be well-supported is lost. Future work on Squirrel will 653 

take alternative topologies into account, and we believe will provide more accurate 654 

phylogenetic network reconstruction.  655 

In our simulations, we found that we were able to identify the circular ordering of 656 

4-cycles with high accuracy from smaller alignments, whereas identifying the position 657 

of the reticulation vertex required longer alignments, However, for constructing larger 658 

level-1 phylogenetic networks, Squirrel only uses the placement of the reticulation 659 

vertex in a 4-cycle quarnet to place the reticulation vertex in 4-cycles in the final 660 

network. For larger cycles in the final network, the circular ordering of the 4-cycle 661 
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quarnets are used. Thus, we may still be able to create accurate level-1 phylogenetic 662 

networks even if we are not able to always identify the correct reticulation vertex, as 663 

is the case for shorter alignments. 664 

We developed several python scripts for both simulating and assessing aligned 665 

sequence data. These scripts read in plain-text files containing expressions for the 666 

phylogenetic invariants to use and may therefore be useful for other researchers 667 

assessing other sets of invariants. Our tool performs quickly on all datasets, with 668 

time demand growing with alignment length. The computations that take the most 669 

time are calculating the empirical distribution of leaf-patterns, followed by performing 670 

a linear transformation of this distribution. Both tasks are parallelisable and 671 

implementing this could increase the speed by up to 12x, although we have not 672 

explored this yet. The remaining time is spent evaluating the polynomial invariants 673 

on the transformed frequency data, and this is also parallelisable. Thus, there is 674 

potential for our tool to be significantly faster. The reason we can perform network 675 

inference relatively quickly is that the most difficult computations (computing the 676 

invariants of the networks) need only be done once. We have already done them 677 

and distribute the results with the tool. The speed at which this tool runs means that 678 

it may be useful for exploratory or initial analyses of large datasets. Indeed, our tool 679 

could be used as a single stage in a larger phylogenetic analysis pipeline, 680 

complementary to other methods. For example, the bootstrap values we obtain could 681 

be used as a fast and efficient way to obtain priors for a deeper Bayesian analysis, in 682 

order to gain further support for a particular topology or for parameter estimation. 683 

One of the biggest challenges of this work was calculating invariants. We used 684 

methods in elimination theory to find a Gröbner basis with the software Macaulay2, 685 

but this does not scale well. Indeed, we were only able to calculate degree 2 686 



S. Martin, N.Holtgrefe, V. Moulton, R.M. Leggett 

invariants for the K3P model. This model is more versatile than K2P and JC, so we 687 

hope our results provide motivation for developing better methods of calculating 688 

invariants in this case. In (Cummings et al. 2024), the authors reduce the 689 

calculations for finding quadratic invariants for 4-leaf, 4-cycle networks under the 690 

Cavender-Farris-Neyman (CFN) 2-state model to finding the kernel of a linear map. 691 

The result is a much faster method of calculating invariants than using Gröbner basis 692 

methods and has been extended to higher degree invariants and other group-based 693 

models in (Cummings, Hollering, 2025), where the authors were able to calculate all 694 

minimal generators of the 4-leaf, 4-cycle network under the K3P model up to degree 695 

3. However, even the K3P model is somewhat simplistic, so we would like to be able 696 

to calculate invariants for more complex substitution models such as the generalised 697 

time reversible (GTR) model, or models that incorporate a molecular clock. Work in 698 

this direction has been recently performed for the CFN model on phylogenetic trees 699 

in (Coons, Sullivant, 2021), and recent theoretical results for the GTR model on 700 

phylogenetic trees (Casanellas et al. 2024) suggest that it may be possible to 701 

compute phylogenetic invariants for those models using similar methods to those we 702 

used here. 703 

We currently do not have an interpretation of the invariants we have found in 704 

terms of the network topology. In the Supplementary Materials, we determine which 705 

of the invariants belong only to a single topology, and which are shared between 706 

different topologies, but we do not know what (if anything) they are telling us of the 707 

topology. Having a greater understanding of the invariants, or determining invariants 708 

that correspond to different topological features may enable faster convergence than 709 

we have observed here, or they may enable a multi-step approach to inferring 710 

networks, in which first invariants are applied to find e.g. the correct circular order, 711 
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and once this is determined, different invariants could be applied to determine the 712 

reticulation vertex. Such a multi-stage approach would also enable the use of 713 

invariants of different degree. This is the topic of future work. 714 
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