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Abstract

Reliable classification of volcano-seismic signals underpins monitoring and eruption forecasting and is an essential tool for
advancing understanding of subsurface processes. However, traditional approaches may overlook the inherent uncertainty and
variability between expert judgments. We introduce an innovative method that explicitly quantifies inter-expert agreement
using the intraclass correlation coefficient (ICC) and incorporates this measure into probabilistic, ICC-informed soft labels,
which can be fed into machine learning pipelines. We conducted a global survey involving 89 experts who classified a set of 80
volcano-seismic events from Ruapehu, New Zealand, providing continuous ratings for standard categories: volcano tectonic
(VT), hybrid (HYB), long-period (LP), and other (OT). ICC agreement scores revealed that single-rater scores produce poor
agreement between experts even for well-established VT and LP classifications. However, reliability significantly improved for
these classifications when multiple expert ratings were combined, although, for HYB and OT categories, expert disagreement
remained substantial. We developed a soft labelling methodology that weights class probabilities by their respective ICC
scores, resulting in a distribution that naturally reflects expert uncertainty. This demonstrates that ICC-informed soft labels
could provide a robust alternative to the hard label standard by explicitly capturing classification uncertainty and variability.
Our fully probabilistic view has the potential to significantly enhance machine learning model accuracy, robustness, and
transferability across volcanic systems and should provide a fundamental shift in how volcano-seismic data are labelled and
interpreted within automated monitoring frameworks.
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Introduction

Editorial responsibility: M. Edmonds

Seismology and the classification of volcano-seismic signals
are key tools for the monitoring of volcanoes (Ramis et al.
2018). Supervised machine learning (SML) is an effective
tool for classification and prediction tasks and is well suited
to fields that rely on expert judgement, such as diagnostic
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techniques adopted from other industries have already shown
promise for volcano-seismic monitoring (e.g. Dempsey et al.
2020; Lapins et al. 2021; Manley et al. 2022). Human insight
is regularly used for simple manual tasks such as data cleans-
ing for machine learning models (Muller et al. 2021). SML
models learn through structured labelled data inputs that are
split into training and test data. The model then generates
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predictions on the test data and is calibrated before being
applied to unseen data. Consequently, the performance of
these models is constrained by the nature of the input data,
so the quality of the training data plays a crucial role in
machine learning. However, evaluation methods that mea-
sure the quality of the data used to train machine learning
models are often less sophisticated than the models trained
by them (DiPietro and Hazari 2022), and explicit uncer-
tainty quantification for labelled data is generally overlooked
(Plank 2022). If the inherent uncertainty in the input data
(labels) is not well understood, the output of the model will
be less reliable (Northcutt et al. 2021). In contrast, models
trained using label uncertainty have been found to improve
model performance (Hagenah et al. 2019; Vega et al. 2021;
Collins et al. 2022; Tayyab et al. 2023). In this study, through
the use of statistical methods developed and utilised in fields
dependent on expert judgement, we quantify the variability
in volcano-seismic event classification among experts in the
field of geophysics and evaluate how this uncertainty can be
incorporated into machine learning workflows.

Volcano-seismic classification

Volcano-seismicity refers to the phenomenon of earthquakes
that occur in close proximity to a volcano, typically within
15km of the active crater, and at shallow depths (i.e. up to
20km) (McNutt and Roman 2015). These restrictions may be
arbitrarily selected to reduce the likelihood of detecting earth-
quakes from non-volcanic sources and will differ depending
on the volcano (Latter 1981). In volcano-seismology, the
processing of seismic events is generally divided into the
detection and descriptions of the seismic signal characteris-
tics, which can be categorised into discrete groups. Changes
in volcanic unrest are often preceded by some kind of
volcano-seismic signal (McNutt and Roman 2015), and the
characteristics of these signals can be indicative of differ-
ent volcanic processes (Chouet and Matoza 2013), making
the accurate classification of volcanic earthquakes of great
importance.

Classifying a volcano-seismic signal is not a straight-
forward task and is usually performed by local expert
analysts (Malfante et al. 2018), sometimes with the assis-
tance of speciality software such as SWARM (Norgaard
et al. 2021) or SeisComP (Helmholtz-Centre Potsdam-GFZ
German Research Centre For Geosciences and GEMPA
GmbH 2008), which are designed to detect, filter, and trans-
form a seismic trace into the frequency and time domain.
At volcano observatories, analysts are trained to classify
volcano-seismic earthquakes based on characteristics of a
trace waveform, spectrogram, and spectrum data. Volcano-
seismic classification groups are generally composed of
transient and continuous events, each with associated inter-
pretations of the source mechanisms driving the signal (Lahr
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et al. 1994). Transient events are broadly referred to as
high frequency/volcano tectonic (VT) (Latter 1981; Lahr
et al. 1994; McNutt 2005), hybrid (HYB) (Lahr et al. 1994,
Chouet and Matoza 2013), and low frequency/long-period
(LP) (Aki and Koyanagi 1981; Lahr et al. 1994). Modern
higher-precision technology has led to the discovery of very-
long-period (VLP) (Neuberg et al. 2000; Zoback et al. 2013)
and even ultra-long-period (ULP) events (Coppess et al.
2022), which have dominant energy for frequencies <0.1 Hz.
Volcanic tremor is a description of a continuous earthquake
signal; however, the terminology can be used to describe a
variety of seismic signatures in geophysics, which can be
confusing. Other indirect volcano-seismic signals, such as
explosions and rockfalls, are also commonly recorded in
proximity to volcanoes. This study will focus on the clas-
sification of transient earthquake signals as described.

The implications that volcano-seismic source models have
for a volcanic system are of great importance for volcano
monitoring. A VT event is indicative of a brittle failure
response indirectly linked to processes in the volcanic sys-
tem, such as a magma intrusion (Roman and Cashman
2006). LP events are most commonly associated with fluid
movement within a crack or conduit (Chouet 1996). HYB
earthquakes have characteristics of both VT and LP events,
typically described as a VT onset with a coda similar to LP,
which is often interpreted as a manifestation of an interaction
between brittle failure intersecting with a fluid-filled crack
or conduit (Lahr et al. 1994). However, the term has also
been used to include LP-like events with any appreciable
high-frequency energy (Neuberg et al. 2000), and a range of
alternative source mechanisms have been hypothesised (e.g.
Lahretal. 1994; Neuberg et al. 2000; Harrington and Brodsky
2007). Given this variability in both waveform characteris-
tics and physical interpretations, it is likely that HYB events
will be more difficult for analysts to classify consistently.

Machine learning techniques for automating the clas-
sification of volcano-seismic signals have been studied
extensively (e.g. Scarpetta et al. 2005; Langer et al. 2006;
Curilem et al. 2017; Malfante et al. 2018; Manley et al. 2022;
Ferreira et al. 2023; Zhang et al. 2024). Despite promising
results, these methods have yet to be standardised or inte-
grated into volcano monitoring practices. Previous models
have been trained using labelled data prepared by a single
expert in a controlled research setting (e.g. Curilem et al.
2009). These labels are constructed without consideration
of the agreement between experts, sometimes referred to as
inter-rater agreement (Fleiss 1971), which is problematic
because the classification of volcano-seismic events can vary
considerably depending on the opinion of the expert (Chouet
and Matoza 2013; Duque et al. 2020; Vyas et al. 2021).
Agreement statistics have been utilised in volcano-seismic
classification to evaluate the outputs of the model (Candrio
et al. 2020). However, it is difficult to evaluate the reliabil-
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ity of models when there is unknown systematic uncertainty
contained in the model inputs. Indeed, training data labelled
by a single expert could considerably bias the model towards
the views of the expert (Stutz et al. 2023; Le et al. 2023),
preventing the model from being able to generalise well to
other settings (Vyas et al. 2021). Furthermore, it has been
found that the most common root of model error is due to
the result of label error (Linville et al. 2019), highlighting the
importance for capturing uncertainty in SML training data.

Ground truth—data labelling

SML models interpret training data labels as correct or
ground truth outcomes that the model uses to learn from the
data, emphasising the importance of accurate training data
labels (Muller et al. 2021). Training SML models requires
a large volume of labelled data. Outsourcing the labelling
process by contracting external teams or platforms, such
as Amazon Mechanical Turk (MTurk) (e.g. Mortensen and
Hughes 2018; Aguinis et al. 2021), is becoming an increas-
ingly popular strategy for managing data annotation tasks
(Aguinis et al. 2021). Outsourcing can serve as an efficient
approach when it comes to large-scale processing of straight-
forward data set labelling (Ahfock and McLachlan 2021),
but it is inadequate for labelling tasks that require expert
knowledge. The primary obstacles to annotating data sets
dependent on expert knowledge are time and expense (Elmes
et al. 2021; Le et al. 2023), and consequently, training SML
models with quality expert-level data presents a significant
challenge within the field of machine learning.

Human error and uncertainty are natural and unavoidable
occurrences. In expert judgement, the level of disagreement
(variability) between raters is called noise (Kahneman et al.
2021). Ground truth is often assumed in machine learning
training data, and the quantification of noise in human label
variation is overlooked (Plank 2022), which inevitably leads
to an unknown overestimation of the model’s capabilities
to make predictions (Frenay and Verleysen 2014; Schmarje
etal. 2022; Stutz et al. 2023). Indeed, machine learning stud-
ies across various disciplines often fail to report on the quality
or the methods for human-labelled training data altogether
(Geiger et al. 2021). There are methods exploring the use of
unsupervised machine learning to help with the data labelling
process in volcano-seismology (e.g. Cui et al. 2021, 2024),
but these still require the intervention of an expert. To obtain
high-quality labelling for data that require expert evaluation,
it may be a good strategy to quantify the level of agreement
between experts, as a form of uncertainty (Hagenah et al.
2019; Jiang and Nachum 2019; Tayyab et al. 2023). This
could be achieved by requiring experts to provide probability
distributions for the class labels, a method commonly known
as soft labelling (Quost et al. 2017; Silva and Oliveira 2021;
Vega et al. 2021; Collins et al. 2022; Grossmann et al. 2022;

Nousi and Tefas 2024). Machine learning and deep learning
models are capable of incorporating uncertainty into model
predictions through soft labelling and other methods (e.g.
Tayyab et al. 2023; de Vries and Thierens 2024). Recent
advances in uncertainty-aware ML in the geosciences have
shown similar benefits when uncertainty is encoded through
label smoothing (e.g. Alfaro-Diaz et al. 2025) or Bayesian
ensemble methods (e.g. Myren et al. 2025) in seismic event
classification, both of which are beyond the scope of this
study. Label benchmarking studies have shown that clas-
sifiers trained on soft labels repeatedly outperform models
trained on discrete hard labels, particularly for smaller and
imbalanced data sets (Madani Tonekaboni et al. 2020; Gross-
mann et al. 2022; Schmarje et al. 2022; de Vries and Thierens
2024). Furthermore, eliciting soft labels for learning has been
shown to improve model performance while relying only
on a few annotators (Collins et al. 2022). Yun et al. (2021)
showed that transforming the training data from a single
label to soft label improved accuracy from +1.4 percentage
points (pp) to +2.6 pp, and robustness up to +8.7 pp. Peterson
etal. (2019) calculated frequency vectors over crowdsourced
human annotators to create soft label targets from the CIFAR-
10 image data set (e.g. Krizhevsky 2009). The study found
that the soft labelled CIFAR-10H training data improved
accuracy for CIFAR-10 and ImageNet-Far by +1.0 pp and
+2.0 pp, respectively, while reducing the cross-entropy con-
siderably.

We believe that statistical methods can be used to com-
bine the views of experts and create a soft labelled data set
that harnesses the inevitable uncertainty in expert judgement.
For volcano-seismic classification, the level of agreement
between expert judgement is quantified for the first time, and
a method for constructing soft labels from annotator uncer-
tainty is proposed. The downstream impacts on machine
learning model reliability, robustness, and generalisation are
beyond the scope of this study, but are likely to be beneficial
(Peterson et al. 2019; Yun et al. 2021; Collins et al. 2022;
de Vries and Thierens 2024). The specific objectives for this
study are (1) to quantify the agreement between experts on
volcano-seismic signatures using the intraclass correlation
coefficient (ICC) (Shrout and Fleiss 1979) and (2) to develop
an agreement-informed soft labelling method suitable for
volcano-seismic classification. The study collated data by
crowdsourcing expert judgement globally through the use of
an online questionnaire, harnessing inter-assessor agreement
statistics to develop soft labels for volcano-seismic signa-
tures.

Methods

The method for this study involves the construction of a
survey aimed at gathering the judgements of experts in the
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field of geological science through an online questionnaire.
The questions were designed to obtain a classification for
volcano-seismic signals based on predefined classification
criteria that align with the standards of most volcano-
seismologists. This section is divided into three parts: First,
we provide an overview of the research area and data collec-
tion. Following that, we detail the design and administration
of the questionnaire. Finally, we define and explain the sta-
tistical techniques used to interpret the results.

Data

The earthquake catalogue used for this study is a subset of a
larger catalogue of relocated events in the Taupo Volcanic
Zone (TVZ), New Zealand, from 2007 to 2024 (Illsley-
Kemp and Mestel 2025). The area of interest is a 9.5 km
radius circle with the summit of Ruapehu volcano as the
centroid, designed to encapsulate the volcano and exclude

events associated with regional tectonic activity and neigh-
bouring volcanoes (Fig. 1). Ruapehu is a popular tourism spot
with hundreds of tourists visiting the Tongariro National Park
daily and thousands of people skiing on the flanks of the vol-
cano. The eruptive behaviour at Ruapehu is characterised by
periodic low-volume (< 0.05 km?), but sudden phreatomag-
matic eruptions that occur frequently (every 25-30 years)
(Kilgour et al. 2013; Conway et al. 2016), with major mag-
matic eruptions occurring every 50 years on average, the most
recent being the 1995/1996 sequence (Bryan and Sherburn
1999; Hurst and McGinty 1999; Sherburn et al. 1999).

The Illsley-Kemp and Mestel (2025) relocated earthquake
catalogue was constructed using the EQTransformer model
(Mousavi et al. 2020), which was trained on earthquake
datasets, which exclude low-frequency events, meaning the
resulting catalogue may bias the events towards the higher-
frequency events. We preferred the catalogue by Illsley-
Kemp and Mestel (2025) over the GeoNet catalogue because

-—
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Fig.1 A map of the Ruapehu volcano region study area, located in the
New Zealand North Island as shown by the inlay. The Ruapehu study
area shows active fault lines (Langridge et al. 2016) with relocated
earthquakes from the TVZ catalogue and stations that were active from
2007 to 2024 (DRZ and WPVZ are no longer active). The study area was
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it contains more low-magnitude events in the proximity of
the volcano summit. The earthquake catalogue was filtered
to only contain shallow earthquakes (i.e. <20km) because
we were interested in earthquakes most likely to be associ-
ated with volcanic processes. The magnitude of completeness
(M,) was calculated by fitting the Gutenberg-Richter rela-
tionship to the cumulative magnitude count and estimating
the point of maximum curvature (Wiemer 2000).

The vertical component raw seismic data streams were
downloaded from the GeoNet FDSN client (GNS Science
2021) using the onset time recorded in the TVZ relocated
catalogue (Illsley-Kemp and Mestel 2025). To minimise the
effects of seismic attenuation, the closest station to the event
epicentre was selected, within a maximum radius of 10km. A
20s time window was selected for the trace signal, allowing
a buffer for inaccurate P-wave onset calculations by starting
0.5 s before the picked onset time. The trace was filtered
using a Butterworth bandpass at 1-25 Hz and resampled to
50 samples per second. Finally, a Hanning taper was applied
to remove abrupt edge discontinuity when slicing the trace
signal by multiplying the trace slice by a cosine-shaped taper,
which suppressed spectral leakage caused by microbarom or
microseismic noise (e.g. Behr et al. 2013; De Carlo et al.
2021), whilst preserving the earthquake signal. For the spec-
trogram, we defined a 1.5 s window length with an overlap
of 85% to improve the time resolution and computed the
short-time Fourier transform (STFT). The amplitude spec-
trum was created by transforming the time-domain signal into
the frequency domain using the fast Fourier transform (FFT),
then isolating and normalising the positive-frequency com-
ponents. These parameters produced clear static plots that
support interpretation and closely resemble data streams in
specialist software, such as SWARM (Norgaard et al. 2021).

Development of the questionnaire

Online surveys provide an effective approach for crowd-
sourced data, particularly as experts reside in many different
regions around the world. We collaborated with subject-
matter experts at Earth Sciences New Zealand (formerly GNS
Science) to develop an online questionnaire that could be
sent by email to other experts around the world. An impor-
tant component of the questionnaire was to use a structured
input format to collect the opinions of a variety of experts
to classify a volcano-seismic event into predefined cate-
gories, based on the visual and descriptive data consistent
with their day-to-day work. Given that the purpose of the
study was to assess the agreement between experts on current
classification regimes, we limited the criteria to the follow-
ing labels: VT, HYB, and LP, as defined by McNutt and
Roman (2015). We omitted tremor from the standard clas-
sifications, in part due to disagreement on terminology and
partly because we decided to focus on transient earthquake

signals in this study. We did not include very low-frequency
signals (i.e. <0.1 Hz) because these fall below the band-
pass filter (1 Hz). We assumed that the earthquake events in
the catalogue are geophysical phenomena and not of anthro-
pogenic origin, and we did not include a standard label for
explosions or rockfalls, as these can be relatively rare events.
However, participants did have the option of labelling the
signal as other (OT) and writing a description. To keep the
layout of the questionnaire clear and easy to interpret, we
avoided using multiple stations and channels, which would
overcrowd the webpage. However, we understand that some
experts may use data from multiple stations to help classify
an event. Instead, we selected a single channel from stations
located near the volcano summit and produced waveform,
spectrogram, and amplitude spectra graphs. We decided to
anonymise where volcano-seismic events originated and to
limit the contextual information on the event to magnitude,
depth, and the proximity of the epicentre to the nearest sta-
tion. This was done to reduce an inherent bias that may be
present in experts who had previously worked in the region.

When classifying each event, we decided to use a continu-
ous scale to minimise the risk of selection bias that could arise
from using a nominal or ordinal scale. This approach allows
one to derive a probability distribution from the participants’
responses. The likelihood scores for each volcano-seismic
classification were collected using sliders, allowing partici-
pants to provide more refined answers. The likelihood scoring
is calculated with a bipolar Likert scale, where a score of
+1 suggests the expert is certain that the event fits the cat-
egory, a score of —1 suggests certainty that the event does
not fit the category, and a score of 0 would be selected if
the expert is impartial. Using bipolar Likert scale data to
create a distribution provides novel insights into consensus
and variability in volcano-seismic classification assessments.
The questionnaire included a question asking participants to
rate the usefulness of the data streams when classifying the
signals on a scale of 1 to 10. It also collected information
on the professional backgrounds of the participants, such as
their job title, years of experience, and the volcanic regions
they have worked in, which were used to make further com-
parisons on the agreements between experts. Full illustrative
examples of the questionnaire are available in the supple-
mentary material.

Although there are methods to calculate the appropriate
sample size for agreement statistics (e.g. Koo and Li 2016),
it was difficult to forecast the total number of completions
or control any response bias. However, we did consider the
chances of participant fatigue or loss of interest in longer
surveys, leading to unreliable answers or even incomple-
tion (Sharma 2022). Response and completion rates can vary
considerably depending on the length, content, and mode of
administration (Booker et al. 2021; Sharma 2022). In survey
research, completion rates are higher for shorter surveys than
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longer ones, and the data quality of participant responses is
also greater for shorter surveys (Sahlqvist et al. 2011; Kost
and Rosa 2018). Surveys containing 13 questions have been
found to have a completion rate of 63%, with completion
rates dropping to 51% for surveys containing 25 questions
(Kost and Rosa 2018). Trial questionnaires were sent to a
small pool of participants to receive feedback on the length
of the questionnaire, and a general consensus of 10 classifi-
cation questions with three additional introductory questions
asking for participant background was deemed long enough
to achieve a statistically significant pool of responses, whilst
maximising the chance of participant completion.

We created eight questionnaires, each containing 10
unique earthquakes (80 unique events in total). Our aim was
to ensure that each expert group classified a similarly diverse
set of volcano-seismic signals, without overlap between
questionnaires. As ground truth labels were unknown a
priori, we grouped events using the frequency index (FI)
(Buurman and West 2010) into low, mid, and high-frequency
strata, and a fixed quota was drawn from each:

A
FI = log, ( -“Pp“> : ¢))

lower

where the Aupper and Ajower are the mean spectral amplitudes
in the predefined bands. LP earthquakes in volcanic regions
have been shown to contain the majority of seismic energy
for frequencies <=5 Hz (Lahr et al. 1994; Chouet 1996;
Neuberg et al. 2000). Therefore, for the FI calculation, we
used a high-frequency band of 5-20 Hz and a low-frequency
band of 1-5 Hz. The sampled events were representative of
the FI distribution in the catalogue and guaranteed exposure
to both high and low-frequency signals within a 10 ques-
tion batch (see supplementary material). Illsley-Kemp et al.
(2022) found for earthquakes within the TVZ, FI decreases
with distance from the earthquake source due to path effects.
We found that using the closest station to the source pro-
duced a similar FI distribution to the attenuation-adjusted
FI in Hlsley-Kemp et al. (2022), so we therefore decided no
additional corrections were necessary.

We targeted four specialist volcanology and geophysics
email chains containing >1000 international and domes-
tic (UK) professionals and early career researchers. After

Fig.2 A computer
programming methodology for
distributing the batches of
questionnaires evenly. The API
hosted by Vercel was triggered
when a participant clicks the
link, which looks up the batch
URL with the fewest visits and
returns that URL for the user

1) User triggers the
Vercel APl via the link
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following the link, each participant would be assigned one
of eight batches containing 10 earthquake events. Unknown
biases, such as imbalanced ratios of early-stage researchers
to senior researchers and individuals with more time avail-
ability, could not be controlled. However, we developed a
programming methodology via an API call to evenly dis-
tribute the questionnaire batches sequentially, determined by
when the user clicks on the link (Fig. 2). This also means that
we were less likely to bias responses based on time zones.

Inter-rater reliability

The pooling of expert judgement is an established problem
in volcanology (e.g. Clemen and Winkler 1999; Aspinall
et al. 2003; Aspinall 2010). When analysing the classifica-
tions scored by multiple experts, it would be ideal for them
to score similarly to each other so that we can be confident
that their scores reflect the frue label. In practice, variability
due to noise is inevitable, and a single-rater design conceals
this variability (Kahneman et al. 2021). Variability can be
revealed by the construction of a noise audit consisting of
multiple annotators, which can be statistically tested using
the intraclass correlation coefficient (ICC) (Shrout and Fleiss
1979). ICCs have been favoured to assess absolute agree-
ment between raters, particularly in the medical sciences
(Spence Laschinger 1992; Wu et al. 2012; Carlsson et al.
2017), where noise between expert judgements can be high
(Chenetal.2017; Hagenah et al. 2019). There are six original
ICC forms for reliability studies (Shrout and Fleiss 1979), in
which the classes are agreed upon by experts (raters) and are
distinguished based on their values for A and B in ICC(A,
B). Variable A denotes the model, which can be a one-way
random (model 1), two-way random (model 2), or a two-way
mixed model (model 3). For model 1, each volcano-seismic
event would be rated by a different set of raters, model 2 is a
random sample of judges providing ratings for n events, and
for model 3, the same k raters are used for n events (Shrout
and Fleiss 1979). Variable B describes whether the scores are
averaged or not, where k, which is a function of B, is the total
number of raters in the set. For this study, experts are grouped
into different batches and rate a unique set of volcano-seismic
events, and these experts are randomly sampled from a global
pool of experts. ICC(2,k) calculates absolute agreement on
the performance of multiple annotators in the belief that the

2) The function is
executed by Vercel

4) Returns the URL with
the lowest count

d\b' O 4 6 Thefunction sends a 302

‘ Redirect response to the
server and connects to the
selected URL

e

e

5) The selected URL
is incremented by 1
in the table

3) The function connects
to the database
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background expertise of the participants is relevant to the
task being performed and also assumes that the raters are
randomly selected from a larger pool of experts (Trevethan
2017). Therefore, we propose using ICC(2,k) to assess the
overall expert agreement across each batch of events and
the ICC(2,1) method to judge whether a single-rater score is
reliable. The ICC(2,k) calculation is outlined by Shrout and
Fleiss (1979) as

MSR — MSE

ICC2, k) = MSR + MSC;MSE

@)

where k is the number of raters for each batch, MSR is the
mean square of the scores for all events in the batch, MSC is
the mean square for raters’ scores, MSE is the mean square
error (residual), and » is the number of events (10). Here, we
show that ICC(2,k) is a two-way random-effects model cal-
culating absolute agreement by the mean of k raters (Shrout
and Fleiss 1979). A detailed guide on how the ICC(2,k)
parameters were calculated is available in the supplementary
material. One can also use the ICC(2,1) to show the relia-
bility of a single rater within a given set of raters to assess
whether we could reliably, on average, use a single rater to
perform volcano-seismic classification:

MSR — MSE

ICC(2, 1) =
MSR + (k — )M SE + XMSC-MSE)

3)

ICC agreement scores are generally bound between [0, 1],
with 1 symbolising perfect agreement and a score of 0 indi-
cating that agreement is no better than random chance. We
adhere to the rule of thumb (e.g. Koo and Li 2016) where ICC
values <0.5 are indicative of poor reliability, values between
0.5 and 0.75 indicate moderate reliability, values between
0.75 and 0.9 indicate good reliability, and values >0.90 indi-
cate excellent reliability.

Construction of training data

Within the questionnaire, we designed a continuous bipolar
Likert scale [—1, 1] with O reflecting neutrality. Expert scores
extracted from the questionnaire were stored as a table with
columns Batch, Event, Rater, VI, LP, HYB, OT. We used
a logistic-normal MAP framework (maximum a posteriori)
to construct soft labels from the continuous expert scores
Se.r.c € [—1, 1] representing rater r and class ¢ for each
event e. This framework builds upon concepts in Bayesian
label aggregation (e.g. Dawid and Skene 1979; Clemen and
Winkler 1999). Our framework is modelled as a Gaussian-
distributed observation of a latent logit ¢, :

Se,r.c ™ N((ﬁg,c, 'L'2). T >0, (4)

The latent variable (logit) is indirectly derived from the inher-
ently noisy annotations (s, .) and represents the strength of
the relationship between instance and class. Logit ¢, . is the
true log-preference for class ¢ in event e, and 7 captures the
overall rater variability. With a flat prior on ¢, the posterior
mode (MAP) (Eq.4) is simply the sample mean of the scores
(Bishop 2006). We then scale by the mean inter-rater relia-
bility (ICC score) (pp ) of the batch b for each class c:

k
A 1
Gec =Pbe 7 Y Seres  poe=max0,ICCQ2, k).c) €10, 1],
k r=l1
(5)

where ICC(2,k)p . is the intraclass coefficient for k raters.
Clamping negative ICCs to zero ensures that classes with
poor agreement contribute nothing to the final label. Finally,
by combining all per-class logits for event e into a single
vector qge = (¢A>e‘1 e (/JA’e,C), the class probabilities are con-
structed using a temperature-controlled (7") softmax function
(Hinton et al. 2015):

exp(e.c/T)

Pe,c = C—’

Z CXI((iA)e’j/T)

j=1

T>0. (©6)

Dividing by T adjusts the confidence of the distribution,
where T < 1 enhances the sharpness of the distribution,
and T > 1 increases the uniformity of the distribution. This
gives the resulting ZC Pec = 1 and p.. € (0, 1) for our
final soft labels. We found that the default 7 = 1 yielded
overly uniform labels compared to the raw scores. Through
testing different temperature scales in the range [0.1, 1], we
found that a temperature scaling of 7 = 0.3 produced soft
labels that captured the underlying spread of the data.

The step-by-step process is detailed in algorithm 1. Each
batch b contains n=10 events with four classes c. The same
k experts score every event-class within their batch. Class-
specific reliability weights are calculated on the full matrix
as Ppc = max(O, ICC(2, k);,,c). Finally, we scale the per-
class sample means by pp . to obtain logits, then apply a
temperature-scaled soft-max (7 = 0.3) to produce a four-
class probability vector for each event that sums to one.

Results

The methodology for obtaining response rates was based on
website hits via the API call, which may be inaccurate if a
user revisits the page or clicks the link multiple times. How-
ever, we estimate that the online questionnaires received a
total of 488 visits over a period from March to May 2025,
with a total number of 89 submissions across all eight batches
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Algorithm 1 Soft label construction from continuous
bipolar ratings.

Input: Batches of scores s, - € [—1, 1]; temperature T ;
(smaller T = sharper distribution)
Output: Soft label table p, . (ExC rows X cols)
Step 1: Reliability weights (once per batch, 10 events);
foreach batch b and class ¢ do
k < number of raters in batch b;
n < number of events in batch b;
extract ANOVA terms MSR, MSC, MSE;
MSR — MSE

ICCQ2,k)p < ;

’ MSR + (MSC — MSE) /n
Pb.c < max(O, ICC(2, k)b,c);

Step 2: Soft labels (per event);
foreach batch b do

foreach event e in b do
foreach class ¢ do

Se,c < mean; Se r ¢}
raters (MAP)
Pe,c < Pb.c Ee,d

// reliability-weighted logit
De,c < exp((¢’e.c/T) — max; (¢e,_//T))§

// softmax numerator

// mean over k

Z < ZC De.c // softmax denominator
foreach class ¢ do
Pe.c < Pe.c/Z; // normalised
probability

| store (b, . pe):

(890 classifications), giving an approximate completion rate
of 18%. We downloaded each batch from the online form
repository and transformed the data into a single repository.
The questionnaire yielded an even spread of completions for
each batch, with arange of experience from postgraduate stu-
dents to >20 years of experience. Table 1 shows a uniform
distribution of participants for each batch from early career
to senior experts, with 31% of experts within the 10-20-year
category. Batch 2 shows the least diversity in experience,
with 70% of the participants having 10-20 years of experi-
ence. In general, the pool of experts had a diverse range of
professional backgrounds but with a focus on volcanology
and seismology, 32% identified as volcano-seismologists,

29% seismologists, and 23% volcanologists. A total of 82%
of participants had previous experience classifying volcano-
seismic events as part of their work. The vast majority of the
participants had worked at a volcano for at least 1 year, and
many experts noted experience in multiple volcanic regions.
The spread of expert experience per region was relatively
uniform, with the most frequently worked region (17% of
participants) being the Southwest Pacific and the least (5%
of participants) being Antarctica. In summary, this distribu-
tion of experience suggests that the data set captures insights
from scientists at varying career stages, encompassing both
early-career and seasoned professionals, while also reflect-
ing a wide range of geographical and specialist backgrounds.
In this section, we quantify the level of agreement between
participants within each batch for class labels and construct
a probabilistic soft labelled data set.

Expert agreement

We present point estimates and confidence bands for the ICC
as an indicator of expert (rater) agreement for the classifi-
cation of volcano-seismic events at Ruapehu (Table 2). For
each batch, the reliability of a single rater yields moderate
to low ICC scores. ICC(2,1) is particularly low for HYB and
OT classifications, indicating that the scores from the raters
fluctuate significantly. Both point estimates and confidence
bands approach zero and often include negative values, indi-
cating significant disagreement between raters. Averaging
raters improves agreement point estimates for HYB events
across batches, but the lower confidence band still includes
values <0, meaning there is no stable between-event consen-
sus. ICC point estimates remain poor for most batches for
HYB even when averaging the raters, confirming the lack of
reliability in the rater scores.

We observe a significant improvement in agreement when
estimating absolute agreement between the average ratings,
which means that more raters can dampen the noise in impre-
cise single-rater scores, as expected (e.g. Koo and Li 2016).
For a single expert, we could expect VT classifications to be
35-58% reliable; however, we see a significant improvement

Table 1 Distribution of

participants by years of Batch name  Experts Student < lyear 1-5Syears  5-10years 10-20years > 20years
experience across batches bl 12 _ _ 2 3 3 4

b2 10 - - 1 2 7 -

b3 10 2 - 2 1 2 3

b4 10 - - 2 2 4 2

b5 11 - - 2 2 4 3

b6 12 - 1 2 4 3 2

b7 13 1 1 1 2 3 5

b8 11 - 1 2 3 2 3

Proportion 3% 3% 16% 22% 31% 25%
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Table 2 Expert agreement: single-rater ICC(2,1) and average-rater ICC(2,k) with 95% Cls for k number of experts

HYB [95% CI] LP [95% CI] OT [95% Cl]

ICC(2,1) k  ICC(2,k) [95% CT]
Batch VT  HYB LP _ OT VT [95% CT]
bl 054 0.2 042 —0.02 12 0.94[0.72-—0.96]
b2 058 0.2 047  0.00 10 0.93[0.74-—0.96]
b3 041 0.17 041 0.10 10 0.87[0.71-—0.91]
b4 058 0.1 063 0.10 10 0.93[0.75-—0.97]
b5 046 0.09 052  0.06 11 0.89[0.60-—0.94]
b6 044 002 032 0.03 12 0.90[0.76-—0.94]
b7 043 0.13 040 —0.00 13  0.91[0.64-—0.95]
b8 036 004 029 00l 11 0.86[0.69-—0.91]

0.63 [=0.17-—0.77]  0.90 [0.60-—0.94]  —0.27 [—0.57-—0.01]
0.59 [—0.07-—0.78]  0.90 [0.72-—0.95]  —0.01 [—0.03-—0.00]
0.68 [—0.45-—0.85]  0.88 [0.48-—0.92]  0.53 [=0.06-—0.61]
0.55[=0.11-—0.72]  0.94[0.36-—0.98]  0.52 [—0.09-—0.69]
0.51 [=0.14-—0.70]  0.92[0.35-—0.95]  0.41 [0.01-—0.64]
0.19 [—0.68-—0.57]  0.85[0.64-—0.90]  0.27 [—0.00-—0.42]
0.66 [ 0.19- 0.74] 0.90 [0.33-—0.94]  —0.02 [—0.09-—0.02]
0.31 [—0.81-—0.62]  0.82[0.19-—0.91]  0.11 [=0.05-—0.26]

when averaging across all raters in each batch to 83-94%
reliability. A similar improvement is noted for the reliability
of LP classifications, increasing from 29-63% to 80-94%.
According to the common practice (e.g. Koo and Li 2016),
this is classified as a good—excellent agreement reliability
and stability for the classification of VT and LP events when
averaging across all experts (k > 9). HYB events generally
achieve moderate agreement scores, but there is significant
variability between batches; in particular, b6 returned very
poor agreement, even when averaged across 12 experts.
Figure 3, sampled from questionnaire batch 6, illustrates
an example of an event that produced noisy scores. In fact,
the differences between the scores were considerable for all
classes, but especially for HYB. The standard deviation for
the raw annotator scores in b6 for HYB classifications is
consistently high (>=0.44) for all events with a maximum
standard deviation of 0.75. This inconsistency in scores for
HYB events results in very low per-rater and average ICC
scores for HYB. The raw data showed that five experts had
absolute certainty (a score of 1) that this was a HYB signal.
Two experts believed with absolute certainty that this was
not a HYB signal (with a score of —1). Two other experts
noted that they were neutral for the HYB class (a score of
zero), and both believed that it was actually an LP event. The
final three experts submitted more conservative scores both
for and against the likelihood of the signal being a HYB.
This large within-event variance (MSE) is what drives the

Fig.3 Question 6 from batch 6

poor agreement ICC score for b6 and shows that we cannot
reliably build interpretations from a single sampled score
from this batch for HYB events.

In summary, single-rater scores range from poor to mod-
erate reliability for VT and LP labels and are unreliable
for HYB and OT. Increasing the number of raters improves
VT and LP to good—excellent reliability and improves HYB
labels to moderate reliability across most batches. We used
the Spearman-Brown formula to sample agreement scores
for increasing k raters to find the minimum number of raters
required to achieve a desired ICC score. We found that at
least 4-5 experts on average are required to achieve good
agreement for VT and LP classifications, and for both event
classes, the projected ICC increases notably with the first 7-8
raters, after which adding more raters results in diminish-
ing returns. This indicates that beyond approximately eight
experts, each additional expert contributes incrementally less
to the overall inter-rater reliability (Fig.4). Increasing the
number of experts does not improve agreement for HYB and
OT labels.

Soft labels

Figure 5 illustrates the comprehensive soft labelled data
set that encompasses all events recorded in the question-
naire. The inclusion of the ICC(2,k) down-weights categories
where there is rater disagreement, which results in lower
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Experts Required vs. Target ICC Threshold
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Fig. 4 A line graph showing the k number of experts and projected
agreement score using the Spearman-Brown formula. We observe a

more pronounced increase in agreement by increasing the number of

Fig.5 A heatmap showing the
complete set of probabilistic soft
labels calculated from expert
scoring. The catalogue is
grouped into eight sub plots and
each batch consisting of 10
events. Within sub plots, each
row represents an event, with
the columns representing the
class labels [VT, HYB, LP, OT].
A full table of soft label outputs
is available in the supplementary
material
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probabilities for HYB and OT classes in general (Fig.6). In
fact, the probability of an event belonging to the HYB or OT
classification is never >50%. Whereas 54% of events were
believed to have a >50% probability of being a VT, and 34%
of events had a >70% probability of being a VT. LP events
had a similar distribution to VT, where 25% of events were
considered to have a >50% probability of being an LP and
16% of events were considered to have a >70% probabil-
ity of being an LP (Fig.6). The distribution of soft labelled
VT events follows a bimodal distribution suggesting that the
experts were confident that around half of the catalogue was
a VT and half of the catalogue was a different kind of event.
This is somewhat similar for LP; however, there are far fewer
events in the catalogue matching this description. Although
agreement was still high, the experts tend to score more con-
servatively for LPs compared to VTs. The distribution of
HYB classifications is right-skewed with the bulk of prob-
abilities 0.1-0.3, due to low-confidence in the ICC scores.
The OT category has a tight cluster of low-probabilities with
very few outliers, showing that these are comparatively rare
events and also not well defined.

In Fig.7, we present four events sampled from the ques-
tionnaire batches to illustrate the representation of soft
labelling for the volcano-seismic data. The examples were
selected based on the strength of the consensus toward one
of the four classifications, i.e. whether it was generally con-
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sidered a VT, HYB, LP, or OT event. There is generally a
stronger consensus within each batch on the classification of
VT and LP events, which can also be seen in Fig. 5.

Some events showed genuine ambiguity among experts
in each batch (e.g. Fig. 8). The survey found that there were
approximately 21% of events in the questionnaire where a
single label does not produce a probability of >50%. Ques-
tion 2 in batch 5 (Fig.8) had comments included by the
annotators that also inferred potential ambiguity in the signal.
Two experts believed the trace could be showing two separate
events, perhaps a VT earthquake triggering another type, with
another commenting that this could be a volcano-seismic sig-
nal with transient noise. Another annotator described this
event as tremor.

Discussion

The classification of volcano-seismic signals is a single
component within a broader field of probabilistic hazard
and risk assessment, which includes detailed hazard sce-
narios (Newhall and Pallister 2015; Bebbington 2014) and
eruption forecasting models, such as event trees (Newhall
and Hoblitt 2002; Neri et al. 2008; Newhall and Pallister
2015) or Bayesian networks (Christophersen et al. 2022)
at active volcanoes. In fact, structured elicitation that com-
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Fig.6 The cumulative total of events and associated soft label probability for each classification across all 80 events
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Fig.7 Data streams of events sampled from batches 2, 3, and 4 showing
the probabilistic soft labels and equivalent hard labels for each event
derived from crowdsourced expert judgement. Event a (batch 4 question
7) epicentre was 2km from FWVZ station (NW of Ruapehu summit)
and has a 93% likelihood of being a VT event. Event b (batch 2 question
3) epicentre was 4.3 km from MAVZ station (Ruapehu summit, north)

bines expert estimates to address uncertainties and biases in
expert judgement is a relatively mature process and plays
an important role in many decision-making practices in vol-
canology (Aspinall et al. 2003; Aspinall 2006, 2010; Tadini
et al. 2022).

It could be that volcano-seismic events exist along a fre-
quency spectrum ranging from VT to LP classifications,
making the categorisation of these signals into discrete bins
a fundamental problem. Naturally, this has led to explo-
rations for alternative methods such as the development of
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and has a 87% likelihood of being an LP. Event ¢ (batch 3 question 7)
epicentre was 0.4 km from MAVZ station (Ruapehu summit, north) and
has a46% likelihood of being a HYB event. Event d (batch 4 question 6)
epicentre was 2.4 km from TRVZ station (SW of Ruapehu summit) and
has a 47% likelihood of being a signal that does not fit to the standard
classification

statistical descriptions of signals using the ratio of high and
low-frequency energy (Buurman and West 2010) or the clus-
tering of latent mathematical features of the signal (e.g.
Duque et al. 2020; Cui et al. 2021). We have shown that
these boundary events that may have an ambiguous label
can be captured using the soft labelling approach that repre-
sents the expert consensus and therefore label confidence. For
volcano-seismic events in the study, there is no established
ground truth, which prevents us from measuring the perfor-
mance of each expert and weight accordingly (e.g. Aspinall
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Fig.8 Question 2 from batch 5 shown in trace, onset zoom, spectrogram, and spectrum form, with constructed probabilistic soft labels. The Mw 0.5
event epicentre was approximately 4.2 km from FWVZ station at 16:27:52UTC on 08/09/2007 at a depth of 10.4 km

et al. 2003). Indeed, assessing individual expert accuracy
is essentially impossible to measure for this task and may
even be irrelevant (e.g. Cholleti et al. 2009). The lack of
a gold standard label has major implications for machine
learning classifiers, be it due to inherent noise commonly
found in agreement statistics or derived from disagreement
in the fundamental classification terms for these signals.
What has been shown is how well a panel of experts agree
on a single task, and the variability of these judgements is
what has been termed noise (Kahneman et al. 2021). Contex-
tual information for each volcano-seismic event was limited
to the magnitude, depth, and distance to the volcano sum-
mit and seismic station. Some experts expressed the need
for more context regarding the signal they were observing.
On the one hand, understanding the context of the signal
is extremely beneficial for interpreting what kind of source
mechanisms may drive earthquakes in the region. However,
we were wary that depending on context may unconsciously
bias the judgement of the expert towards prior experiences.
Instead, it was integral to the study that each individual base
their judgement solely on the data streams provided. We
used the ICC to assess whether experts form a consistent
agreement by consensus, and the results indicated that within
every volcano-seismic category, there is considerable uncer-
tainty among experts. However, we observe good to excellent
reliability when averaging across multiple experts, particu-
larly for VT and LP events, and even moderate reliability for
HYB events. Machine learning serves as a tool to help auto-
mate some of the processes that formulate expert judgement.
However, SML models depend on the expert judgement to
construct training data sets for the model to learn from. While
single-expert classifications provide a useful forecasting tool,
our results highlight the risk of relying solely on the interpre-
tation of one expert when training machine learning models.

Volcano-seismic classifications were originally estab-
lished by a select group of experts who made observations
and interpretations based on a limited number of volca-
noes (e.g. Minakami et al. 1951; Latter 1981; Chouet 1986;

Lahr et al. 1994). The source-mechanism models relating to
these signals have profound implications for interpretations
of processes occurring in the volcanic system (e.g. Sparks
2003; Chouet and Matoza 2013; Matoza and Roman 2022).
However, they are applied at numerous volcanoes world-
wide without a formal calculation of uncertainty (Sparks and
Aspinall 2004). VT swarms have been one of the most widely
used precursory signals for eruptions, but with occasional
contrasting precursory relevance (Roman and Power 2011).
The cumulative magnitude of VT swarms has even been pro-
posed as a proxy for magma intrusion volume estimates
(White and McCausland 2016; Meyer et al. 2021; Danré
et al. 2022). HYB swarms have been associated with lava
dome growth and even a precursory signal for dome collapse
at Soufriere Hills Volcano (Miller et al. 1998; Ottemoller
2008). The source mechanics relating to LP earthquakes are
often linked to gas and fluid movement (Chouet 1996; Clarke
et al. 2021), which perhaps has the most significant implica-
tions for volcanic unrest, but can also be interpreted as slow
faulting (Bean et al. 2014). It was not the objective of this
study to deny the validity of these precursors. However, the
unreliable agreement between experts in volcano-seismology
emphasises the importance of understanding the uncertainty
in classifying these signals. This is particularly significant, as
both volcano monitoring and broader research into volcanic
processes rely on these event classifications to yield insights
into the dynamics of the volcanic system (Cortés et al. 2021).

Expert agreement

The primary objective of this research was to evaluate the reli-
ability of expert judgement in classifying a single transient
volcano-seismic signal, where the expert must rely solely
on the data and limited contextual background. The results
show that under these conditions, which are comparable to
a volcano showing signs of unrest after a period of repose,
where only a single station is operational, expert agreement
can vary significantly. Identical measurements between raters
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would yield an ICC(2,k) score of 1. The highest single-point
agreement estimate was 0.94 with relatively narrow 95% con-
fidence bands (0.72-0.96) between experts in batch 1 for
labelling VTs only (Table 2). This is an excellent agreement
(Koo and Li 2016); however, it falls significantly to 0.54
(moderate agreement) when using the single-rater model. In
general, the single-rater model (ICC (2,1)) is found to pro-
duce a lower absolute agreement than the mean (ICC (2,k))
(Koo and Li 2016), i.e. in statistics, the mean score of a
group of raters tends to outperform individual judgement
(e.g. wisdom of the crowd) (Rauhut and Lorenz 2011; Nasci-
mento et al. 2022; Schmarje et al. 2022). Similar studies have
found that collective decision-making does not outperform
the aggregated average judgement of individuals (Hamada
etal.2020). This is also in agreement with Wright and Augen-
stein (2025), who found aggregating existing soft labelling
methods both improved accuracy and tightened calibration,
even across different domains.

The ICC values are driven by between-event variability
as well as the variability within each rater’s measurements
(Koo and Li 2016). We believe that 10 individual events
with three potential categories (and one category attributed
to non-volcanic signals) were sufficient to provide true event
variability within each batch. We therefore infer that the low
single-rater ICC(2,1) scores are due to genuine variance in
expert judgement. In such cases, it might be recommended
to use the mean because individual ratings are too unreliable
(Shrout and Fleiss 1979). There is generally good agreement
for VT and LP events when averaging at least 4-5 raters,
which are fundamental labels for volcano-seismic machine
learning classifiers (Candrio et al. 2020; Bueno et al. 2020;
Manley et al. 2022), with HYB labels either not used or
combined with other mixed seismic signatures (Bueno et al.
2020). The significant variability observed among experts
suggests that there may be no definitive ground truth label
for volcano-seismic events. In fact, some expert feedback
expressed that the current classification scheme is impractical
for volcano monitoring, and it has been shown that the phys-
ical processes driving these signals may not fit the standard
volcano-seismic classification labels (Matoza and Roman
2022). Given that they remain critical for monitoring and
forecasting, reducing noise in expert judgement requires the
revision of the current classification scheme towards devel-
oping a more robust gold standard, or by introducing frequent
noise audits utilising ICCs or an alternative agreement metric
(Nascimento et al. 2022).

Does experience matter?
We segmented each batch by experience to investigate poten-
tial correlations between years of experience and agreement.

Each participant was asked to select from the following expe-
rience buckets: postgraduate student, 1-5 years, 5-10 years,
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10-20years, >20 years. We found that there was no clear pos-
itive correlation, but there were perhaps some nuances worth
commenting on. We do observe a slight increase in reliabil-
ity for single-rater scores for HYB events with experience,
but not enough to deem reliable volcano-seismic classifica-
tion. Similarly for VT and LP, we never see a consensus that
merits a good single-rater score. This means that although
it is recommended that to reliably classify volcano-seismic
events one should consider using at least four experts, it
matters less whether the pool of experts contains senior or
early-career researchers. Therefore, we can say that the vari-
ability in expert judgement is not driven by inexperience but
is underpinned by genuine ambiguity in the data with regards
to the given discrete labels.

At the end of the questionnaire, we asked each partici-
pant to rate how useful each data stream was to assist the
expert in their judgement. We found that there was a gen-
eral consensus in the ranking of the trace, spectrogram, and
spectrum for experts with >1 year experience, where the
most useful data stream was the spectrogram, followed by
the trace, and the least useful data stream was the spectrum.
However, we found that with increasing experience, the mar-
gin between the spectrogram and the trace decreases, and for
the most experienced experts, the trace becomes the most use-
ful data source on average. For the most experienced experts
(>20 years), the standard deviation for the scores of the three
data sources was lowest (0.84), implying that senior experts
were more likely to make judgements equally based on the
three data streams, whereas the early career experts were gen-
erally more dependent on the spectrogram. This could be due
to computational constraints pre—2000, where spectrograms
were relatively hard to create and visualise; therefore, expe-
rienced researchers may be more used to using the waveform
traces and spectra to do volcano-seismic classification.

Applications for machine learning

For SML, input data is transformed into vectors before being
processed, and the vectorisation method selected for train-
ing depends on the nature of the input data and the model
being used. It is difficult to comment on the labelling method
used in volcano-seismic classification literature because it
is rarely explicitly detailed. However, the use of experts to
apply a discrete classification to a signal is commonly men-
tioned (Malfante et al. 2018; Falcin et al. 2021; Manley et al.
2022), which is likely a form of one-hot encoding or hard
labelling (Poslavskaya and Korolev 2023). Machine learn-
ing models trained on hard labels learn to produce highly
confident scores for each prediction, which breaks down
when there is no clear boundary between classes (Vega
et al. 2021). Therefore, noisy or even mislabelled data can
lead to adverse estimates of model accuracies. We observe
this in volcano-seismic data, and it is demonstrated via the
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inter-rater reliability results. We have shown that reliabil-
ity in labelled data sets should not be taken for granted.
Instead, volcano-seismic classification labels should also
be treated probabilistically to incorporate measured uncer-
tainty directly into the model. This is analogous to methods
in medical imaging that combine the opinions of multiple
experts to train more reliable models (Silva and Oliveira
2021; Vega et al. 2021). The exploration of Bayesian neural
networks (BNNs) to capture model uncertainty in volcano-
seismic classification (Bueno et al. 2020) shows a shift from
deterministic to probabilistic modelling (Sparks and Aspinall
2004). Our results show how a simple MAP framework can
incorporate expert agreement to create soft labelled data sets,
which could enhance current models towards a fully proba-
bilistic framework.

Soft labels can be incorporated into ML pipelines for
a variety of models that have already shown promise for
volcano-seismic classification, such as convolutional neural
networks (e.g. Manley et al. 2022) and BNNs (e.g. Bueno
et al. 2020). This can be achieved by changing the target
format from one-hot to probability distribution vectors and
ensuring that the loss function has soft label compatibility
(e.g. Ge et al. 2022; Nousi and Tefas 2024). The adoption
of probabilistic soft labelling elicited from even a small pool
of experts (e.g. Collins et al. 2022), and shown in Fig.4,
could present an opportunity to greatly improve model accu-
racy and calibration (Vega et al. 2021). Furthermore, models
trained on soft labels have been found to generalise better
to unseen data (Vyas et al. 2021), meaning that classifiers
trained at one volcano could be transferable to other volca-
noes. Lee et al. (2022) showed how cross-domain generated
soft labelling achieved up to +6.9 pp on a standard leave-
one-domain-out benchmark compared to hard labelling. This
means that combining datasets from a variety of volcanoes
could help reduce the burden of data volume for model train-
ing whilst potentially improving model generalisability.

We recognise that time constraints limit the feasibility of
large-scale, multi-analyst labelling of volcano-seismic data.
We therefore propose periodic audits led by a small group
of experts to produce a subset of soft labels. The resulting
uncertainties quantified in the audit can be applied in prac-
tice as prior probabilities or calibration targets downstream
in ML models. Further data augmentation can be achieved by
collaborating with observatories and research groups to con-
struct cross-domain (multi-volcano) datasets, which could
reduce the need for future large-scale labelling efforts.

Limitations

With this being the first attempt to crowdsource expert judge-
ment on volcano-seismic classification, it is anticipated that
there may be areas where the methodology can be improved.
Moreover, although methods for assessing expert agreement,

such as the ICC, have been evaluated and implemented in dis-
ciplines such as psychology and medical sciences, there are
no universally established procedures in this context. While
the application of soft labels in machine learning classifiers
appears promising, the methodologies for creating soft labels
remain an area of development. Part of the survey enabled
experts to provide their opinions on the design of the method-
ology, and the general feedback was positive. We have noted
how the path effect when seismic energy travels from source
to station could result in signal attenuation and aimed to
mitigate this by selecting the closest station to the event.
However, experts expressed uncertainty on whether the seis-
mic attenuation had affected some of the events illustrated in
the questionnaire. We recognise the importance of applying
methodologies, such as stacked spectra from three or more
stations, to separate the true signal from source and path
effects. However, the option to utilise multiple stations at a
volcano is not always available. Furthermore, the ability to
adapt time windows would help experts distinguish between
transient noise and volcano-seismic signals, which may be
present in the data (Fig. 8). The integration of soft labelling
functionality into software such as SWARM could allow for
the extension of labels for continuous signals; this would also
allow for the user to utilise multiple stations.

There is a possibility that the questionnaire could be inter-
preted differently depending on the expert. In particular, the
sliding scale to select a probability label from —1 to +1 for
all four classes could be difficult to understand, and a simpler
framework may reduce inter-rater noise whilst still producing
reliable soft labels. Finally, although we provided evidence
that using multiple annotators to construct probabilistic soft
labels would be beneficial, we did not have enough data to
perform an actual machine learning benchmark.

Summary

The aim of this study was to assess the level of agreement
between experts when undertaking an everyday but non-
trivial task. Classifying volcano-seismic events is essential
both for operational monitoring and for advancing funda-
mental volcanic research; thus, ensuring close agreement
among experts is vital to achieve accurate risk assessments.
We presented a method for soft labelling and inter-rater
uncertainty that is both novel for volcano-seismology and
supported by cross-disciplinary evidence, which could lead
to machine learning models that produce reliable accuracy
claims and are able to generalise well to other volcanoes.
The observation of disagreement among experts from dif-
ferent volcanic settings is of great significance for current
monitoring practices and emphasises the requirement for
multiple experts to produce reliable judgements. Future work
may benefit from quantifying the agreement using data from
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different volcanic settings. We have shown how volcano-
seismic classification can be achieved using crowdsourcing
through the use of an online questionnaire. We have also
shown how aggregating the judgements of experts from dif-
ferent volcanic background can result in a somewhat reliable
consensus, so one does not have to depend solely upon local
expert knowledge to perform these tasks. Studies showing
the benefits of cross-domain training for model generalisa-
tion (e.g. Lee et al. 2022), along with methods for reducing
training data volumes while improving model accuracy (e.g.
Manley et al. 2022), make the utilisation of multiple experts
and the calculation of their uncertainty feasible for volcano-
seismic classification. For machine learning, the accuracy
of the model output is restricted to the reliability of the
labelled data. If the training data is of high quality and
incorporates uncertainty, then the model should produce
reliable outputs, which may generalise well to other volca-
noes. This is certainly of scientific interest and merits future
work.
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