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The BSAC Resistance Surveillance Project ran from 1999 to 2019, amassing an unrivalled collection of almost 
100 000 bacterial isolates from bloodstream and lower respiratory tract infections in the UK and Ireland. It 
was initiated in response to increasing antimicrobial resistance and supplemented existing surveillance 
schemes, enhancing the understanding of resistance epidemiology by estimating species prevalence within 
collection groups together with levels of antibacterial resistance, presented in terms of MICs and percentage 
susceptibility for each species/antibiotic combination tested. Generated data were explored to monitor and 
identify factors shaping resistance trends, and to profile antibacterial resistance patterns in specific geographies, 
settings and patient populations. The release of data and/or bacterial isolates led to a rich repository of 
published peer-reviewed papers. Additionally, the promotion of the BSAC standardized susceptibility testing 
method resulted in greater uniformity of antimicrobial susceptibility testing in hospital microbiology laborator
ies. Over time, public health laboratories’ surveillance systems became increasingly comprehensive, and the 
BSAC Project ceased in 2019. This invaluable collection is now housed in the University of Dundee, in collabor
ation with the University of St Andrews. We highlight the collection’s unique timeliness, and how the BSAC 
Project contributed to key interventions for infection prevention and control, public health and antimicrobial 
stewardship. We demonstrate the utility and benefits of the Project outlining the collection’s future applications 
as an important bioresource. It comprises well-defined bacterial isolates—many now sequenced—with MIC 
data and demographic information. This legacy is available to researchers via the Tayside Biorepository and 
custodian contacts.

Introduction
Antimicrobial resistance (AMR) rose in the political and media 
agenda in the early 1990s as it became apparent that ‘superb
ugs,’ notably MRSA, were increasing and negatively impacting 
the health of patients.1

The proportion of Staphylococcus aureus bacteraemia cases due 
to MRSA rose from 1% to 2% in 1990–1992 to around 40% by 2000 
in the United Kingdom and this increase coincided with the emer
gence of the epidemic strains EMRSA-15 and -16, which rapidly es
tablished endemicity in many hospitals, with chains and clusters of 
nosocomial transmission.2 The BSAC identified that existing anti
microbial surveillance was not adequately robust for clinical and 

public health purposes and, in 1996/7, formed a working party to es
tablish a national surveillance project. Following this, a call came in 
1998 from the UK Standing Medical Advisory Committee (SMAC) 
Sub-Group on AMR to develop an adequately-resourced national 
surveillance programme to assist in understanding and controlling 
the spread of resistance.3 Previous experience from the Alexander 
Project (an international, multicentre, longitudinal surveillance 
study of resistance in common respiratory pathogens) suggested 
that a similar sentinel surveillance system would be feasible in 
the UK and Ireland and would bring many benefits.4

MacGowan et al.,5 in this Supplement, provide further back
ground detail of the events that led up to the establishment of 
the flagship BSAC Resistance Surveillance Project. This Project 
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was initiated to provide surveillance of antibacterial resistance in 
key clinical pathogens in the UK and Ireland. It ran from 1999 to 
2019 during a time of significant change and transformation in 
terms of public health action for AMR. This paper will discuss 
some of these key milestones in more detail to highlight the un
ique timeliness and benefits of its Surveillance Programmes as 
well as the collection’s current and future value and utility.

During the early 2000s, there was growing political, clinical and 
media pressure to reduce AMR and infection rates.6,7 Key responses 
included the Health Act 2006 Code of Practice, national infection 
prevention and control (IPC) directives and initiatives to improve 
hand hygiene compliance, hospital environment inspections and 
cleaning of healthcare premises.8,9 National evidence-based guide
lines were developed to address healthcare-associated infections 
(HCAIs), including those associated with devices such as urinary 
and central venous catheters.8,10

Mandatory reporting of MRSA bloodstream infection (BSI) was 
introduced in England in 2001.11 Later, in 2004, mandatory re
porting was introduced also for Clostridioides difficile infection 
(CDI) involving patients aged 65 years and over.12 The CDI sur
veillance definitions were then expanded in April 2007 to include 
all cases in patients aged 2 years and over. The aims were to cut 
MRSA bacteraemia cases by 50% by 2008 and to reduce CDI by 
30% by 2010–2011.13 Changes also included the introduction 
of national mandatory screening of all admissions for MRSA in 
December 2010 by National Health Service (NHS) England.14

Centrally-issued penalties were imposed on NHS hospital trusts 
with excessive numbers of MRSA and CDI cases to highlight 
that HCAI target failures were the responsibility of the trust 
board, not just clinicians.15

Mandatory Escherichia coli bacteraemia surveillance was 
added in England in June 2011 following observed year-on-year 
increases; in April 2017, Klebsiella spp. and Pseudomonas 
aeruginosa bacteraemias were added to the mandatory surveil
lance scheme.12 With the exception of S. aureus and methicillin 
resistance, these mandatory schemes do not include information 
on AMR but do measure the burden of invasive disease.

In the same period, there was also increased focus on anti
microbial stewardship, partly to reduce the risk of CDI. A key 
milestone, in 2003, involved an allocation of 12 million pounds 
to hospital pharmacists by the UK Department of Health to im
prove the prescribing of antibiotics within trusts.16 The main con
sequence was the development of a cadre of ‘Antimicrobial 
Pharmacists’ serving virtually all hospitals in the UK. This led to 
a raft of actions such as: (i) revision of antimicrobial guidelines 
to reduce the use of the so-called ‘4C’ antibiotics (ciprofloxacin, 
clindamycin, cephalosporins and co-amoxiclav) that were espe
cially blamed for selection of CDI; (ii) improved multidisciplinary 
interactions between Microbiology, Infectious Diseases and 
Pharmacy teams via ward rounds and meetings, as well as (iii) 
increased training and education for healthcare professionals 
on appropriate antimicrobial use.16 This, in turn, led to significant 
shifts in antibiotic prescribing, with successive decreases be
tween 2007 and 2010 in the proportions of patients with CDI 
in England who had been prescribed either fluoroquinolones or 
cephalosporins.11 Significant and quantifiable reductions in 
both MRSA bacteraemia and CDI were seen following the imple
mentation of multimodal IPC interventions (including cleaner 
hospitals and improved care and management of intravascular 

catheters) and antibiotic stewardship interventions. In add
ition, the realization that huge outbreaks could lead to costly 
and embarrassing litigation may have pressured Trusts to reach 
these targets. By the end of March 2008, the Department of 
Health reported that the NHS had achieved a dramatic 57% re
duction in MRSA BSI and 41% reduction in CDI in England. 
However, subsequent E. coli BSI targets have proved much 
harder to achieve.17

Establishing an effective surveillance system
The BSAC Resistance Surveillance Project was developed with two 
separate Programmes, respectively assessing the prevalence of 
resistance in pathogens frequently implicated in community- 
associated and (later) hospital-acquired respiratory tract 
infections, and in bloodstream infections (BSIs). The Respiratory 
Programme began, in 1999, collecting and centrally testing 
Streptococcus pneumoniae, Haemophilus influenzae and Moraxella 
catarrhalis from clinical samples. Following the success of this first 
Programme, a Bacteraemia Programme was established in 2001 
to collect and test the most frequent Gram-positive and -negative 
pathogens responsible. MacGowan et al.5 provide further informa
tion on the establishment of the Project, and how it was designed 
to complement and cross-reference with Public Health Laboratory 
Service (now the UK Health Security Agency (UKHSA)) surveillance, 
undertaken by collection of hospitals’ own routine susceptibility 
data for bloodstream isolates.

The BSAC Programmes were designed so that a total of 
25–40 collecting laboratories from across the UK and Ireland 
contributed isolates. These were tested at the UKHSA’s prede
cessor organisations—the Public Health Laboratory Service 
(PHLS), the HPA and Public Health England (PHE) in London— 
or at LGC in Fordham (previously Quotient Bioresearch and 
GR Micro in London). These ‘Central Laboratories’ undertook 
identification of the bacterial isolates and measured MICs by 
the BSAC agar dilution method.18 Further testing by various 
methods such as PCR was carried out to confirm specific anti
biotic resistance mechanisms. More information on the meth
odology can be found in the paper by Allen et al. published in 
this Supplement.18

Dissemination of results and sharing of data
The BSAC Resistance Surveillance Working Party strove to dissemin
ate and report their findings, with first outputs of the Project being 
published in 2001 as posters at the 22nd International Congress 
of Chemotherapy (ICC) and 41st Interscience Conference on 
Antimicrobial Agents and Chemotherapy (ICAAC).19,20 Many 
publications and posters followed, and the BSAC website lists 
and hosts over 130 of these outputs.21 To enable collabora
tions and public engagement the BSAC surveillance team pre
viously made their antibiotic susceptibility data, including MIC 
results, open access to researchers, policy makers and the pub
lic via the internet. A website (now discontinued) allowed users 
to create graphs and tables of resistance rates. In addition, the 
BSAC also offered the research community access to the bac
terial isolates for further testing. This became a valuable bior
esource, accelerating research into AMR and its molecular 
epidemiology.

Parcell et al.
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Utility of the BSAC Resistance Surveillance 
Project
Testing of new antibiotic agents
The Programmes had many different applications (Figure 1). 
One of these, which also ensured funding, was to test investi
gational or newly marketed agents against a nationally repre
sentative contemporaneous collection of isolates also tested 
with a core panel of routinely used antibacterials. This approach 
had several benefits for the Project’s sponsors as it enabled 
cost-effective testing of their new agent’s performance, along 
with access to results for the comparator agents tested. Thus, 
for example, it allowed direct comparison of the two licenced 
anti-MRSA cephalosporins, ceftaroline and ceftobiprole, with the 
findings now published.22 Company-sponsored studies, by con
trast, have typically compared one or other of these molecules 
with established agents, but without head-to-head comparison.

In addition, there was the added credibility of results being 
produced independently by a scientific society rather than an in
dividual company or its direct grantees.

Monitoring pathogen submission and resistance trends
The overarching aim of the Project was to study AMR epidemi
ology, documenting the prevalence of different species within 
groups and of antibacterial resistance, with comprehensive 
MICs and percentage susceptibility for each species/antibiotic 
combination tested.3,23 The data were collected to inform clinical 
and public health practice.

The BSAC Resistance Surveillance Working Party could review 
temporal changes in the proportions of different species within 
collection groups, notably showing the progressive replacement 
of Enterococcus faecalis by Enterococcus faecium as the predom
inant enterococcus species in UK bacteraemias.24 Temporal rises 
in resistance likewise could be tracked, for instance the increase 

of cephalosporin resistance due to CTX-M extended-spectrum 
β-lactamases (ESBLs) in E. coli from 2002 to 2007 described in 
the paper by Reynolds et al.25 These changes were associated 
with the emergence and proliferation of ST131 E. coli. 
Carbapenem resistance was also monitored and methods used 
to seek carbapenemase genes can be found in the paper by 
Allen et al.18

Additionally, the data could be used to screen for subtle in
creases in MICs, for instance, vancomycin MIC creep among 
MRSA (although this was not found).26 Such analyses depended 
on having isolates stored, so that they could be retested over 
an extended period under exactly the same conditions.

The BSAC Resistance Surveillance Project also highlighted re
sistances, which were not detected by routine testing: for ex
ample, it identified that inherent resistance to colistin in 
Enterobacter cloacae complex was frequent and mostly asso
ciated with Enterobacter asburiae. Routine monitoring would 
not have found this because colistin is rarely tested, except 
against carbapenem-resistant isolates, and because reporting 
to UKHSA is typically as ‘E. cloacae complex’.27

Evidence-based practice and clinical guidance
One important function of the surveillance was to review, using 
MIC data, the appropriateness of particular antibiotics as empir
ical treatment for bloodstream and lower respiratory tract infec
tions. This information was used as an evidence base for clinical 
decision-making through guidance development and publica
tions.28–30 It was also used, e.g. to develop a prescribing algo
rithm for use in conjunction with rapid pathogen identification 
from nosocomial pneumonia in the INHALE (Potential of 
Molecular Diagnostics for Hospital-Acquired and Ventilator- 
Associated Pneumonia in UK Critical Care) multicentre rando
mized controlled trial.31

Figure 1. Applications of the BSAC Resistance Surveillance Project.

Legacy, benefits and future of the BSAC                                                                                                          
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Identifying patient population and geographical 
resistance differences
In some instances, the BSAC team highlighted unusual resistance 
patterns in certain bacteria from submitting laboratories, or in 
certain patient populations. Examples include the identification 
of many E. faecalis isolates with high-level resistance to both ci
profloxacin and gentamicin. Typing by pulse-field gel electro
phoresis confirmed two large ‘epidemic’ clusters that had 
become established across various hospitals.32 The ability to in
terrogate the surveillance system data in such detail led to the 
finding that resistance had emerged in particular demographics, 
as in the case (before the proliferation of ST131) of ciprofloxacin- 
resistant E. coli in bacteraemias being largely from men.33

Assessing resistance drivers and impact of public health 
interventions
Surveillance Project data have also been used to explore the re
lationship between factors that could shape antibiotic resistance, 
such as antibiotic prescribing. The BSAC Surveillance Working 
Party used their data along with those from the then Health 
Protection Agency’s LabBase/CoSurv system and the European 
Antimicrobial Resistance Surveillance System (EARSS) to investi
gate associations between trends in penicillin and macrolide re
sistance amongst pneumococci, making a comparison to 
antibiotic sales before the widespread deployment of PCV7 
(which greatly disrupted the previous epidemiology). Pooled esti
mates from all datasets indicated significant reduction in penicil
lin non-susceptibility among pneumococci in the UK, since 1999 
(P < 0.004), which may have reflected a reduction in community 
antibiotic use of penicillins. The authors, however, highlighted 
that no parallel reduction in macrolide resistance had been 
seen, despite reduced sales. They reasoned that this may be 
due to the ‘fitness’ of a single clone of serotype 14 V S. pneumo
niae, designated England 14–9, which had been established in the 
UK since around 1993 and which, by 2005, accounted for ∼60% 
of all macrolide-resistant invasive isolates.34

In a later study, data from both the BSAC surveillance and the 
UKHSA’s national database were interrogated to both reveal 
there had been significant increases in cephalosporin and quin
olone resistance amongst Enterobacterales BSI from 2001 to 
2006, with cephalosporin resistance largely due to the spread 
of CTX-M ESBLs.35 Then, from 2007 to 2011, non-susceptibility 
to cephalosporins and quinolones declined, and it was suggested 
that this reflected major reductions in the use of cephalosporins 
and quinolones, implemented primarily to reduce the selection of 
C. difficile. Further detail is given in the paper by Reynolds et al.25

of this series. ESBL-producing E. coli and K. pneumoniae contin
ued to increase in continental European countries, where there 
was not a parallel switch away from cephalosporins and 
quinolones.

The introduction of vaccines is a public health intervention 
that can have a major impact on human health. Examples of 
the impact of vaccines on resistance trends, and on serotype re
placement, are described in the paper by Horner et al.36 of this 
series, which covers surveillance data for respiratory and invasive 
S. pneumoniae across the introduction of pneumococcal conju
gate vaccines, PCV7 and 13.

Optimizing and developing testing methodologies
Data from the Surveillance Project have served to warn microbiol
ogists about testing issues, particularly in respect of ESBL detec
tion. Specifically, warnings were raised to underscore the 
potential for false-positive ESBL results when testing Klebsiella 
oxytoca strains that hyperproduce K1 β-lactamase.37 The 
authors warned that this risk is magnified if laboratories test 
only a few β-lactam antibiotics whilst solely using cephalosporin- 
clavulanate ‘ESBL tests’ to define ESBL production.

In another example, BSAC MIC data supported the develop
ment of an algorithm to predict resistance from whole-genome 
sequences of E. faecium.38 In this study, researchers created a 
bespoke catalogue of 228 genetic markers for resistance for 12 
antibiotics that could be used to treat E. faecium infections. The 
authors then used the BSAC-determined antibiotic susceptibility 
phenotypes of the isolates to validate the diagnostic accuracy 
of this catalogue. They found that they could achieve near- 
complete genotype–phenotype concordance for ampicillin, ci
profloxacin, vancomycin and linezolid, with high statistical sensi
tivity for tetracycline, teicoplanin and high-level aminoglycoside 
resistance.

Moving towards genomic pathogen surveillance
To date, over 4400 BSAC isolates have been sequenced by the 
Wellcome Sanger Institute, for various studies. These include 
349 Group A Streptococcus, 80 Pseudomonas spp., 636 
Enterococcus spp., 1098 E. coli, 1282 multidrug-resistant (MDR) 
Gram-negative isolates (including Acinetobacter spp., 
Enterobacter spp., E. coli, Klebsiella spp. and Serratia spp.), along 
with over 989 S. aureus.39–43 Notably, some of these studies 
have employed genomic surveillance to characterize bacterial 
populations over large geographic and temporal scales.

In one study, researchers sequenced 168 E. faecalis isolates 
from three collections (National Collection of Type Cultures, 
BSAC and Cambridge University Hospitals NHS Foundation Trust 
(CUH)) to carry out a genome-based characterization of 
hospital-adapted bloodstream infection E. faecalis lineages.44

They found that three lineages (termed L1, L2 and L3) predomi
nated, with 53% of isolates clustering into these. L1 was demon
strated in each year of the collection; however, L2 was mostly 
identified between 2001 and 2006, with only two subsequent re
presentatives found after that time. The authors postulated that 
this could suggest clonal replacement, much like the phenom
enon observed for MRSA. After reviewing geographical sources, 
they considered L1 and L2 to be epidemic clones as they were na
tionally distributed, whereas L3 was only isolated in two locations 
(CUH and a hospital in the East Midlands referral network). The re
searchers found that putative virulence and antibiotic resistance 
genes, including vancomycin, were over-represented in L1, L2, 
and L3 isolates combined compared to the remainder lineages.

In another study, authors at the Sanger Institute sequenced 
1013 UK bloodstream MRSA isolates submitted to the BSAC by 
46 laboratories between 2001 and 2010.39 From this, they pro
duced an overview of the population structure of MRSA in the 
UK, describing how the majority of isolates were clonal complex 
22 (CC22-MRSA), also known as UK EMRSA-15. They then mined 
these data and identified differences in local and regional anti
biotic resistance profiles. Phylogenetic reconstruction was carried 
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out on the CC22 isolates. The authors placed the genomes from 
two confirmed outbreaks and a pseudo-outbreak (where 
epidemiology suggested an MRSA cross-infection but whole- 
genome sequencing demonstrated unequivocally that the 
isolates were unrelated) into the CC22 phylogenetic tree and 
found that there was a clear demarcation between the two out
break clusters whilst isolates from the pseudo-outbreak were 
scattered throughout the tree.45 Thus, the genetic database 
could be used to investigate suspected outbreaks.39

The genomic sequencing data of MRSA from the BSAC 
Resistance Surveillance Project supported a further analysis by 
the Sanger Institute, looking at the population structure of blood
stream EMRSA-15/CC22 between 1998 and 2012 in relation to re
gional patterns of patient transfers. Researchers used isolates 
that had been submitted to 52 hospitals in the UK and Ireland. 
The authors identified distinct bacterial population structures 
that mirrored each hierarchical level of the referral networks 
(from hospitals, to regions, to countries) and identified that pa
tient referrals played a key role in EMRSA-15 transmission.40

Numerous BSAC isolates have undergone sequencing as part 
of other studies. As mentioned earlier in this manuscript, an epi
demiological investigation [including sequencing and biochemical 
analysis of lipopolysaccharides (LPS)] was carried out to examine 
the first 50 colistin-resistant E. cloacae complex isolates received 
by the BSAC Resistance Surveillance Project in comparison with an 
equal number of susceptible isolates.27 The study identified that 
colistin resistance was increasing amongst BSI isolates and was 
particularly associated with E. asburiae. Resistant isolates were 
widely scattered in time and place amongst submission sites 
and the BSAC team concluded that the resistance was a 
frequent inherent trait in some genogroups. Biochemical analysis 
revealed that resistant and hetero-resistant isolates exhibited 
more complex lipid A patterns compared with susceptible isolates 
specifically, forms with 2-hydroxylation and palmitoylation 
(typically generated by LpxO and PagP enzymes) were identified, 
and membranes rich in these may be less susceptible to disorgan
isation by polymyxins. None of the sequenced isolates contained 
mcr genes.

Surveillance and ‘one health’ research
‘One Health’ is an integrated, unifying approach, which aims to 
balance and optimize the health of people, animals and the en
vironment. The BSAC Resistance Surveillance Project supported 
AMR research in this area by enabling researchers to examine 
the genetic relatedness of bacteria from human, animal and en
vironmental origins.

In one study, researchers compared 423 vancomycin- 
resistant E. faecium in municipal wastewater treatment plants 
with 187 bloodstream vancomycin-resistant E. faecium from 
five hospitals in the East of England, with some of the latter 
isolates from the BSAC surveillance.41 Phylogenetic analysis re
vealed widespread distribution of hospital-adapted vancomycin- 
resistant E. faecium beyond acute healthcare settings and into 
the environment.

In a separate study, the same researchers used pathogen 
genomics to investigate whether livestock could be a potential 
reservoir for E. coli strains that later cause human BSI.42 The re
searchers sequenced 431 E. coli isolates from livestock farms 

and retail meat in the East of England and compared these 
with the genomes of 1517 E. coli bacteria associated with human 
BSI from the BSAC Project. Phylogenetic core genome compari
sons revealed that the livestock and human BSI isolates were 
genetically distinct. In addition, the researchers used long-read 
sequencing to analyse mobile genetic elements and identified 
that the prevalence of shared AMR genes between livestock 
and human isolates was low. These results, taken together, 
suggest that the E. coli responsible for human BSI are very 
unlikely to originate from livestock. This entirely accords with 
separate work, not predicated on the BSAC collections, showing 
that ST131 is the predominant ESBL-producing and fluoroquino
lone resistant E. coli lineage from human BSI and gut colonisa
tions but is extremely rare or absent among ESBL E. coli from 
foodstuffs.46

Closure of the BSAC Resistance Surveillance 
Project
The BSAC Resistance Surveillance Project assembled a collection 
of ∼100 000 bacterial isolates (with associated resistance data) 
from bloodstream and lower respiratory tract infections over 
two decades until its closure in 2019, as described by Allen 
et al.18 in this series.

This closure reflected multiple pressures, including financial 
constraints on the pharmaceutical funders, with fewer antibiotics 
being developed by profit-making companies, increased take
overs within the industry and contracts ending. In addition, 
UKHSA surveillance has improved, with more antibiotic resistance 
data reported under the voluntary surveillance for bacteraemia 
isolates than 20 years ago. Moreover, these data have improved 
in quality, reflecting wide adoption of MALDI-TOF mass spec
trometry for identification and better standardized susceptibility 
testing by BSAC and, latterly, European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) methods.

Research into pathogen genomics is gaining traction. 
Significant investment in sequencing facilities at reference la
boratories occurred in response to the COVID-19 pandemic. In 
parallel, several ‘national pathogen genomics strategies’ were in
troduced across the UK, paving the way for greater use of se
quencing for surveillance and the investigation of infectious 
public health threats.47–49 Time will tell how far these will be ex
panded to include resistant pathogens.

Future utility as a bioresource
After the official closure of the BSAC Resistance Surveillance 
Project, a call was made by the Society to find a new home for 
the isolate collection. After competitive application, the 
University of Dundee, in collaboration with the University of St 
Andrews, was successful. Both universities are at the forefront 
of AMR research, with international experts working on sequen
cing, diagnostics, vaccine development and therapies, including 
new antibiotics, combination therapy and repurposing of anti
microbial agents.

Since relocation to Dundee, the collection has been main
tained at −80°C, with ongoing local and international interest 
from researchers to access resistance data and bacterial isolates. 
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Bacterial isolates and data can be sourced via applications to 
the Tayside Biorepository part of the NHS Research Scotland 
(NRS) Biorepository Network (https://nrsbiorepository.hicservices. 
dundee.ac.uk/), which provides governance support through a ro
bust review process of applications (See Box 1 for contact details).

The re-housed collection is already supporting several re
search studies. These are varied, as exemplified below, ranging 
from wet-lab focused work to big data analysis. Some projects 
are newly initiated whilst, in others, research teams further ex
plore previous research findings. One of the first applications for 
isolates came from a group who are investigating and exploring 
the structural diversity of enterococcal polysaccharide antigen. 
As part of this, they are building on their previous findings, in 
which they identified that this polysaccharide is involved in AMR 
and virulence.50 Another application, from a different group, 
aims to examine numbers of BSAC isolates using a newly- 
developed ‘rapid tolerance screen’ in order to identify bacterial 
populations that can survive transient exposures to an otherwise 
lethal concentration of antibiotic, without exhibiting resistance in 
terms of raised MICs51 Other research teams continue to charac
terize the BSAC Group A streptococci isolates, which were se
quenced previously.52 Part of this involves wet lab work to 
investigate the microorganisms’ ability to form biofilms and sur
vive in whole human blood or on human tonsil tissue and their 
adherence and invasion of human cell lines. The group is also 
looking at resistance to opsonophagocytosis and the expression 
levels of virulence factors. In addition, the collection has also 
been used for a study exploring competitive interactions be
tween bacteria in relation to Type VI secretion systems (T6SS). 
Some bacteria, notably Serratia marcescens, use these to deliver 
antibacterial toxins directly into neighbouring competitor bac
teria, killing or disabling them.

Other studies, demonstrating the diverse application of the 
collection, include one on the use of machine learning to predict 
antibiotic resistance, and another—recently funded—to investi
gate potential antibiotic adjuvant therapies for the treatment 
of recalcitrant P. aeruginosa infections.

Interrogation of already-generated sequencing data con
tinues. One example of this involves a recent genomics-based 
molecular epidemiology study using longitudinal sequence and 
resistance data for E. coli from BSI to investigate the contribution 
of antibiotic use to clonal success in the UK and Norway, vis-a-vis 
intra-strain competition for colonization and infection.53 The 
authors found that the resistance profiles (in particular to tri
methoprim) of successful clones varied and did not always 

correlate with, nor reflect, patterns of antibiotic usage. They sug
gest that further research should be carried out to understand 
the effects of antibiotic selection, with additional focus on 
non-antibiotic-related factors that may influence colonization 
competition and clonal success.

The BSAC collection has also recently supported research into 
developing an in-silico E. coli capsular typing database to quantify 
K-antigen-related invasive potential across different extra- 
intestinal pathogenic E. coli lineages. The researchers found 
that several K-types and lineages contributed disproportionately 
to invasive extra-intestinal pathogenic E. coli disease.54 They 
postulate that these findings could be used to improve extra- 
intestinal pathogenic E. coli diagnostics and inform predictive 
regional risk maps.

These examples underscore the breadth of research oppor
tunities the collection provides and the scope to return to its un
ique data, building on the Society’s initial work.

Summary
During its active years, the BSAC Resistance Surveillance Project 
provided an elegant contribution to resistance surveillance, en
meshing with UK systems that collected large-scale but less-rich 
data, as well as bringing many additional benefits across re
search and clinical practice. The collection represents a ‘time cap
sule’ representing trends in antibiotic resistance that occurred 
during a period of great transformation involving public health 
action to reduce AMR, HCAI and, through vaccination, invasive 
pneumococcal disease.

The beauty of the collection is that it was assembled according 
to a defined surveillance protocol using standardized antibiotic 
testing to measure MICs. Many other surveillance projects are 
single-centre or ad hoc special-interest collections or have too 
few centres per country to be representative. By contrast, the 
BSAC Project collected isolates from a large number of clinical cen
tres across the British Isles, precluding overrepresentation of out
breaks affecting one or two sites. The collection contains highly 
resistant strains and organisms of interest. The legacy of the col
lection continues to live on as an important bioresource—and 
this maintenance is very much down to the meticulous care and 
planning taken by the original founders, many of whom remained 
associated with the Project throughout its lifetime.

There is great potential for researchers to continue to use the 
collection to unlock the secrets of AMR for many years to come. 
Access to the isolates is available to researchers via the Tayside 
biorepository and via the custodians listed in this paper (Box 1). 
It is a rich resource of well-described bacterial isolates, with 
MIC-based resistance data and some anonymized demographic 
information. The significant and growing number of whole gen
ome sequences that are available will allow further investigation 
into resistance, toxins, virulence and pathogenic factors and mo
bile genetic elements. As bacteria and resistance continue to 
evolve it will, increasingly, become a historic reference collection 
from around the turn of the century. In short, the collection re
mains relevant and important into the future, as we deepen 
our understanding of antibiotic resistance and develop new strat
egies to combat it.

Box 1. Custodian contacts for supply of isolates and 
data

Dr Benjamin J. Parcell, Clinical Senior Lecturer and Honorary 
Consultant Microbiologist, Division of Population Health and 
Genomics, School of Medicine, University of Dundee, Ninewells 
Hospital and Medical School, Dundee, DD1 9SY, United Kingdom. 
Email: bjparcell@dundee.ac.uk or benjamin.parcell@nhs.scot.
Stuart Reid, Senior Healthcare Scientist at Ninewells Hospital and 
Medical School, NHS Tayside. Email: stuart.reid5@nhs.scot.
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