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Objectives: The BSAC Respiratory Surveillance Programme examined resistance trends among Streptococcus 
pneumoniae, Haemophilus influenzae and Moraxella catarrhalis from patients with community-acquired lower 
respiratory tract infection (CA-LRTI). 

Methods: Quotas of isolates were sought per collecting site from 1999/00 to 2018/19; an annual October start 
date captured winter infection peaks within single years. MIC testing was by BSAC agar dilution. β-Lactamase 
detection with nitrocefin and pneumococcal serotyping by classical methods or WGS. 

Results: Resistances were uncommon, except that β-lactamases occurred in c. 20% of H. influenzae from 2012/ 
13 following earlier rises, and in >90% of M. catarrhalis throughout. Only 0.11% (12/10881) of S. pneumoniae 
were fully resistant to penicillin; co-amoxiclav inhibited 97.8% of 13526 H. influenzae and >99.9% of 6309 M. 
catarrhalis isolates. Cefotaxime inhibited >99% of all isolates at breakpoint, as did relevant fluoroquinolones 
in the fewer years tested. Tetracycline inhibited >98% of H. influenzae and M. catarrhalis and 85% of S. pneumo
niae. Significant shifts were: (i) fluctuating resistances to tetracyclines, macrolides and penicillin in pneumococci, 
reflecting serotype replacements; (ii) expansion, from 2012/13, in the proportion of H. influenzae with β-lacta
mase-independent amoxicillin/co-amoxiclav resistance; and (iii) increasing high-level amoxicillin resistance 
(MIC  > 64 mg/L) among β-lactamase-positive H. influenzae. MIC differentials were seen for cephalosporins 
between β-lactamase-positive and β-lactamase-negative M. catarrhalis, greatest (512-fold) for ceftaroline. 

Conclusions: CA-LRTI remains eminently treatable, yet shifts are occurring in the serotypes of S. pneumoniae 
most associated with resistance and in the nature of amoxicillin resistance in H. influenzae. β-Lactamase-related 
cephalosporin MIC differentials for M. catarrhalis are striking but their clinical significance remains uncertain.

Introduction
Acute community-acquired lower respiratory infections 
(CA-LRTI), including community-acquired bacterial pneumonia 
(CAP), are frequent, increasing with age and being more frequent 
in the north than the south of England.1 Rates are higher in men 
than women and among those with socioeconomic deprivation, 
chronic underlying respiratory disease or a history of smoking and 
immunosuppression.1 The associated mortality is 5%–15% 
among those hospitalized with bacterial CAP, rising to 30% 

among those admitted to ICU.2 There was a remarkable suppres
sion of bacterial CAP, as well as invasive pneumococcal disease, 
during the COVID-19 pandemic lockdowns of 2020–21, perhaps 
because transmission was prevented, or because the seasonal 
viral infections that often precipitate bacterial pneumonia were 
suppressed.3,4

The ‘typical’ pathogens of CA-LRTI are Streptococcus pneumo
niae, Haemophilus influenzae and, less frequently, Moraxella cat
arrhalis,5 although laboratory failure to recover a pathogen is 
frequent6 and may reflect sample quality, the challenges of 
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culturing delicate and fastidious organisms or a larger-than- 
recognized proportion of viral pneumonias. A minority of cases, 
concentrated among younger patients, involve ‘atypical’ patho
gens, notably Mycoplasma pneumoniae and Chlamydophila 
pneumoniae.5 Legionella pneumophila, another ‘atypical’ agent, 
notoriously causes outbreaks when aerosolized from air- 
conditioning or other water-containing systems.7 Severe disease 
is most often associated with S. pneumoniae or L. pneumophila, 
although the latter is uncommon.5,7

The BSAC resistance surveillance monitored resistance trends 
in the ‘typical’ pathogens of CA-LRTI from October 1999 to 
September 2019, and results are presented here. This period in
cluded the years—2006 and 2010, respectively—when 7- and 
13-valent pneumococcal conjugate vaccines (PCVs) were first de
ployed in UK children as protection against invasive pneumococ
cal disease.8 It is now well established that, via a herd-immunity 
effect, these also reduce invasive pneumococcal disease in older 
cohorts.9 Reductions in vaccine-serotype non-invasive pneumo
nia have also been reported, although less extensively.10

The impacts of vaccines on serotype distributions in both bacter
aemia and CA-LRTI are discussed more fully elsewhere in this 
Supplement, as are the effects on particular serotype-associated re
sistances.11 This paper describes the resistance changes in pneumo
cocci from CA-LRTI during the two decades of the BSAC’s 
surveillance. It also describes changing resistance patterns in H. in
fluenzae and raised MICs for cephalosporins—notably anti-MRSA 
‘fifth-generation’ agents—in β-lactamase-producing M. catarrhalis.

Materials and methods
Details of methods are fully described elsewhere in this supplement12; ac
cordingly, only a brief summary is provided here. Isolates were requested 
from patients with CA-LRTI in community settings or hospitalized for 
≤48 h. They were collected over ‘winter’ seasons (defined as October to 
April) from 1999/2000 until 2007/08 and in rolling October to 
September years thereafter until 2018/19; 34–39 laboratories contribu
ted each season in 2010/11 to 2014/15, and 20–25 laboratories in all 
other seasons. The surveillance sought up to 1000 isolates each of 
S. pneumoniae and H. influenzae and 500 M. catarrhalis until 2007/08, 
with these approximately halved from 2008/09 to 500–560 and 
250–280, respectively. Identification was originally by classical methods, 
later replaced by MALDI-TOF for H. influenzae and M. catarrhalis. MICs 
were determined by BSAC agar dilution and categorized for susceptibility 
and resistance against EUCAST 2022 breakpoints; β-lactamase detection 
was with nitrocefin; pneumococcal serotyping initially followed classical 
methods but was later inferred from WGS. The antibiotics tested included 
core agents tested in all years under the aegis of the BSAC as well as those 
included for variable periods contingent on sponsorship by funders. All 
these aspects are generic to the data papers of this supplement and 
are fully described elsewhere.12

Tables S1 and S2 (available as Supplementary data at JAC Online) 
show the numbers of laboratories contributing, isolates collected per sea
son, and necessary data interpretations and exclusions. Tables S3–S5 de
tail breakpoints (EUCAST v12.0, 2022) and susceptibility tests by 
organism, antimicrobial and years included. Tables S6–S9 and Figures 
S1 and S2 cover patient characteristics, noting any missing data. MIC dis
tributions are presented as an Appendix to the Supplementary Data.

Analysis
Analysis was descriptive and largely graphical, using Stata 18.0 
(StataCorp LLC: College Station, TX, USA) and Bischoff’s colour 

vision-sensitive ‘plotplainblind’ graph scheme.13 Missing data were ex
cluded in the calculation of percentages.

Results
Isolate collection
The total collection comprised 10 881 isolates of S. pneumoniae, 
13 526 H. influenzae and 6309 M. catarrhalis (Table S2). Greater 
numbers of H. influenzae than S. pneumoniae may reflect 
greater prevalence, or better pathogen recovery, given that tar
get numbers of isolates were identical for both species. For all 
three species, over 90% of isolates were from sputum speci
mens, with small minorities from other sources, most frequently 
broncho-alveolar lavage (Table S9). The proportion of male 
patients averaged between 49% (M. catarrhalis) and 55% 
(S. pneumoniae), with some indication of a downward trend 
from near 60% to around 50% over the surveillance period for 
S. pneumoniae (Table S6). The median patient age ranged 
from 63 (S. pneumoniae) to 67 (M. catarrhalis) years; the propor
tion of patients aged ≥80 years was higher for M. catarrhalis 
(16%) than for S. pneumoniae (12%) and H. influenzae (11%) 
(Table S7 and Figure S1). M. catarrhalis has also been associated 
with older patients in Japan.14 Patients aged under 1 year 
formed a distinct but small group, largest for M. catarrhalis at 
2%. The reported proportion of hospitalized patients (≤48 h) 
fell from a peak of near 60% in 2003/04 to stabilize near 10% 
from about 2014/15 onwards for all three species (see 
Figure S2); we suspect that this may partly reflect how speci
mens from Admissions Unit and Accident and Emergency are 
recorded in hospital data systems, as well as increased care in 
the community, including Outpatient Parenteral Antimicrobial 
Therapy.15

S. pneumoniae
The collection of S. pneumoniae comprised 661–809 isolates per 
season from 1999/2000 to 2007/08 then, with altered quotas 
and testing at a different central laboratory, 325–480 isolates 
per season from 2008/09 to 2018/19 (Tables S2 and S3). 
Isolates were serotyped in 2005/06 and then continuously 
from 2013/14 to 2018/19. Proportions within the coverage of dif
ferent pneumococcal vaccines changed substantially between 
these periods (Figure 1); more details are provided elsewhere in 
this Supplement.11

After seven seasons of stability (Figure 2), the period from 
2007/08 to 2012/13 witnessed an approximate doubling in the 
prevalence of resistance among pneumococci to erythromycin 
(10%–19%), clindamycin (6%–13%) and tetracycline (6%–16%) 
and of reduced susceptibility to penicillin (MIC  > 0.06 mg/L; 
8%–15%); inducible clindamycin resistance, tested from 2011/ 
12, was very rare (0.4%), accounting a tiny fraction of all clinda
mycin resistance. Subsequently, from 2014/15, there were reduc
tions in resistance or reduced susceptibility to all these agents; 
however, these falls were smaller than the preceding rises and, 
for penicillin and tetracycline, were short-lived. Underlying these 
rather sedate changes were much bigger serotype shifts, doubt
less contingent on PCV deployment. In 2005/06, most resistance 
to erythromycin and tetracyclines and non-susceptibility to peni
cillin was associated with isolates of Serotypes 6B, 9V, 14, 15, 19F 
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and 23F (Table 1). By 2013/14 to 2015/16, resistance or reduced 
susceptibility to all these agents was largely associated with iso
lates of Serotypes 15A (especially), 3, 19A, 19F, 23B, 33F and 35B. 
These serotypes remained the most prominent among resistant 
isolates in 2016/17 to 2018/19, as explored more fully elsewhere 
in this Supplement.11 Notably, the proportion of clindamycin resist
ance among erythromycin-resistant isolates increased from 44% 
in 2005/06 to 77% and 75% in 2013/14 to 2015/16 and 2016/ 
17 to 2018/19, respectively.

Only 12 S. pneumoniae isolates out of all 10881 were fully re
sistant to penicillin, with MICs > 2 mg/L; nine of these 12 were 
from Ireland, as against 1458/10 881 (13%) of all isolates; seven 
were from a single centre that accounted for half of the Irish iso
lates and were scattered across years. Penicillin MICs were either 

4 (N = 11) or 8 mg/L (N = 1); only two resistant isolates were 
serotyped, and both belonged to type 19F. All other penicillin 
non-susceptibility was low level, with MICs 0.12–2 mg/L and 
most often (64%) in the lower part of that range, with values of 
0.12–0.5 mg/L. Amoxicillin resistance, at the breakpoint for oral 
administration (R  > 1 mg/L), increased from an average of 1% 
in the first five annual collection periods to 3% in the last five; 
cefotaxime resistance remained <1% throughout. Cefuroxime 
resistance, tested until 2013/14, was fairly stable at around 
5%. Resistance rates were under 1% for four other β-lactams 
and fluoroquinolones that were not tested in all years, specifically 
ceftaroline (mode, 0.008; range, 0.002–0.5 mg/L); ceftobiprole 
(0.015; 0.004–2 mg/L); levofloxacin (1; 0.25–64 mg/L); and moxi
floxacin (0.12; 0.03 to ≥64 mg/L). Twelve percent of the pneumo
cocci were resistant to cefaclor (mode 0.25; range 0.015 to 
≥256 mg/L), a drug tested only until 2004/05. Clarithromycin 
was tested for 4 years, giving results that paralleled those for 
erythromycin (Table S3).

MICs of ceftaroline and ceftobiprole correlated strongly, but 
ceftaroline was slightly more active based on MICs, and with few
er resistant isolates (one versus 11) among 1021 tested with both 
agents; a fuller comparison was published in 2020.16

H. influenzae
The 13 526 H. influenzae comprised 888–1004 isolates in each of 
the first nine seasons and 416–528 in those from 2008/09 on
wards (Tables S2 and S4). The prevalence of β-lactamase produc
tion (as detected with nitrocefin) and resistance to both 
amoxicillin and ampicillin (as estimated by MIC determinations) 
were stable and near equal at around 16% in the five seasons 
to 2003/04, before increasing gradually to near 20% in 2012/ 
13. After 2012/13, their paths diverged: β-lactamase production 
remained near 20%, whereas total amoxicillin resistance contin
ued to rise, reaching 32% in 2018/19 (Figure 3). This divergence 
reflected the expansion of β-lactamase-negative amoxicillin- 
resistant (BLNAR) organisms, from fewer than 2% of isolates in 
1999/2000 to 2012/13 to 11% by 2018/19 (Figure 4). 
Resistance to co-amoxiclav climbed in parallel with the rise of 
the BLNAR isolates over the same period and from a similarly 
low baseline (Figure 3). BLNAR isolates typically had low-level 
amoxicillin resistance, with MICs of 4 or 8 mg/L in 84% of cases; 
amoxicillin MICs for β-lactamase producers mostly were higher. 
Since the modal MICs of amoxicillin and co-amoxiclav for suscep
tible isolates remained constant over time at 0.5 mg/L, we con
sider that these shifts were real and not artefacts of testing nor 
the change of central testing laboratory (Figure 5).

Also notable, and beginning around 2009/10 (i.e. slightly be
fore the rise of BLNAR), there was a striking increase in the propor
tion of β-lactamase producers with high-level amoxicillin 
resistance, defined here as an amoxicillin MIC  ≥ 64 mg/L. From 
2000/01 to 2009/10, this trait was seen, on average, for 18% of 
β-lactamase producers and 3% of all H. influenzae isolates, in
creasing to 89% and 19% respectively by 2018/19 (Figure 4). 
Most β-lactamase producers [96% on average but only 90% 
(72/80) in the final surveillance year] remained susceptible to 
co-amoxiclav despite the high amoxicillin MICs; overall, the 
mode MIC of co-amoxiclav for β-lactamase producers was 
0.5 mg/L, with a range from 0.03 to 8 mg/L.

Figure 2. Resistance trends among S. pneumoniae from CA-LRTI. PEN*, 
penicillin (with ‘susceptible, increased exposure’ included as resistant); 
TET, tetracycline; ERY, erythromycin; CLI, clindamycin; CXM, cefuroxime. 
Arrows indicate when PCV7 and PCV13 were introduced to the infant vac
cination schedule in England.

Figure 1. Changing prevalence of vaccine serotypes among S. pneumo
niae from CA-LRTI. Arrows indicate when PCV7 and PCV13 were intro
duced to the infant vaccination schedule in the UK; wide deployment of 
PCV7 followed a year later in Ireland whereas PCV13 deployment was 
concurrent in the UK and Ireland. Serotypes included in each vaccine 
group were PCV7: 4, 6B, 9V, 14, 18C, 19F and 23F; PCV13-non7: 1, 3, 5, 
6A, 7F and 19A; PPV23-nonPCV: 2, 8, 9N, 10A, 11A, 12F, 15B, 17F, 20, 
22F and 33F; and non-vaccine: any serotype not included in PCV7, 
PCV13 or PPV23.
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H. influenzae had low rates of resistance to other agents 
that were tested every season, at <1% for cefotaxime (MIC mode 
0.015 mg/L; range ≤0.001 to 1 mg/L) and ciprofloxacin (0.008; 

≤0.001 to ≥64 mg/L) and <2% for tetracycline (0.5; ≤0.03 to 
≥16 mg/L) (see MIC distributions in Appendix to Supplementary 
Data). Resistance to cefuroxime, which was tested only in the first 
15 years, averaged 6% (MIC mode 0.05 mg/L; range ≤0.03 to 
≥64 mg/L); it was seen for 5% of co-amoxiclav-susceptible isolates 

Table 1. Proportions of CA-LRTI S. pneumoniae isolates with resistance/reduced susceptibility to penicillin, erythromycin and tetracycline, and top four 
serotypes of resistance burden, before and after PCV introduction

Period 2005/06 2013/14 to 2015/16 2016/17 to 2018/19

Total isolates of S. pneumoniae from CA-LRTI N = 749 N = 1162 N = 1021
Penicillin Ia + Rb (MIC  > 0.06 mg/L)

N (%) penicillin I + R 51 (6.8%) 158 (13.6%) 140 (13.7%)
N (%) of penicillin I + R due to PCV13 types 45 (88%) 45 (28%) 36 (26%)
Top four types for penicillin I + R (rank order) 14 9V 19F 6B 15A 19A 35B 19F 15A 23B 19F 35B
% penicillin I + R due to top four types 75% 63% 56%

Erythromycin Rb (MIC  > 0.5 mg/L)
N (%) erythromycin R 87 (11.6%) 214 (18.4%) 166 (16.3%)
% of erythromycin R due to PCV13 types 65 (75%) 54 (25%) 49 (30%)
Top four types for erythromycin R (rank order)c 14 19F 6B 15c 15A 19F 33F 19A 15A 19F 19A 35B
% of erythromycin R due to top four types 70% 55% 51%

Clindamycin Rb (MIC  > 0.5 mg/L)
N (%) clindamycin R 38 (5.1%) 164 (14.1%) 124 (12.1%)
% of clindamycin R due to PCV13 types 31 (82%) 50 (30%) 42 (34%)
Top four types for clindamycin R (rank order) 19F 14 6B 15 15A 19F 33F 19A 15A 19F 19A 33F
% of clindamycin R due to top four types 82% 68% 60%

Tetracycline Rb (MIC  > 2 mg/L)
N (%) tetracycline R 63 (8.4%) 187 (16.1%) 148 (14.5%)
% of tetracycline R due to PCV13 types 44 (70%) 76 (36%) 67 (45%)
Top four types for tetracycline R (rank order)c 19F 6B 14 23Fc 15A 19F 3 19A 15A 3 19F 19A
% of tetracycline R due to top four types 62% 59% 63%

aI = susceptible (increased exposure).
bR = resistant.
cIsolates that could not be assigned to a serogroup ranked fourth among erythromycin-R and tetracycline-R in 2005/06, ahead of Serotypes 15 and 
23F, respectively, but are demoted as they were heterogeneous.

Figure 3. Trends in resistance and β-lactamase production among 
H. influenzae from CA-LRTI. β-LAC, β-lactamase; AMX, amoxicillin; AMP, 
ampicillin; AMC, co-amoxiclav. N.B. Co-amoxiclav was tested with a 2:1 
amoxicillin:clavulanate ratio until 2012/13 and with a fixed 2 mg/L clavu
lanate from 2013/14. This shift, increasing the effective breakpoint from 
>2 + 1 to >2 + 2 mg/L, should have slightly suppressed rather than in
creased resistance rates.

Figure 4. Levels of amoxicillin resistance among amoxicillin-resistant 
CA-LRTI H. influenzae with or without β-lactamase activity. β-LAC, 
β-lactamase; MIC, mg/L of amoxicillin. Results for 1999/2000 are ex
cluded as MIC tests were censored at 16 mg/L.
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(a) (b)

Figure 5. MIC distributions for (a) amoxicillin (AMX) and (b) co-amoxiclav (AMC) among H. influenzae from CA-LRTI for three 3-year periods—(top pa
nel) before, (middle panel) after and (bottom panel) longer after the change of central testing laboratory and testing format for co-amoxiclav (which 
occurred between 2012/13 and 2013/14). In the first period (2010/11 to 2012/13, top panels), testing was at LGC and co-amoxiclav testing was with a 
2:1 amoxicillin:clavulanate ratio. In both later periods (2013/14 to 2015/16, middle panel; also 2016/17 to 2018/19, bottom panel), testing was at 
UKHSA and co-amoxiclav testing was with a fixed 2 mg/L clavulanate. There was no upward shift of modal or lower MICs in the 3 years after the 
change, nor subsequently. Rather, the proportion of isolates with resistance increased over time while the laboratory and method remained constant 
(see Figures 3 and 4). The MIC axis spans ≤0.015 to ≥64 mg/L in all cases, with labelled values showing the range of observed data; the red vertical line 
indicates the resistance breakpoint.
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but for 66% of co-amoxiclav-resistant isolates. Unfortunately, test
ing of cefuroxime was terminated in 2013/14, at around the date 
when co-amoxiclav resistance began to rise notably, precluding la
ter cross-correlation of these traits.

Based on three to nine years of testing, resistance rates were 
<1% for moxifloxacin (mode 0.03; range 0.004–8 mg/L), levo
floxacin (0.015; 0.004–16 mg/L) and ertapenem (0.03; 0.004– 
1 mg/L); 2% for minocycline (0.25; 0.03–8 mg/L); and 3% for 

(a) (b)

Figure 6. MIC distributions for β-lactamase-negative (a) and β-lactamase-positive (b) M. catarrhalis from CA-LRTI. AMP, ampicillin (1999/2000 omitted); 
AMC, co-amoxiclav; CEC, cefaclor; CTX, cefotaxime; CPT, ceftaroline; BPR, ceftobiprole; CXM, cefuroxime. Years with data affected by testing of a restricted 
concentration range were omitted, as noted, to show the true ranges more accurately. The MIC axis spans ≤0.001 to ≥1024 mg/L in all cases, with la
belled values showing the range of observed data; red vertical line(s) show breakpoints. Where two lines are shown, they indicate the susceptible (S ≤) and 
resistant (R >) breakpoints; MICs between these bounds are designated I ‘susceptible, increased exposure’. Figure continues on next two pages.
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ceftaroline (0.008; ≤0.002 to 1 mg/L). MIC modes and ranges for 
four agents lacking breakpoints, but tested in 6–16 seasons, 
were: cefaclor (2; 0.12 to ≥256 mg/L), ceftobiprole (0.06; 
≤0.002 to 2 mg/L), tigecycline (0.25; 0.03 to 2 mg/L) and tri
methoprim (0.12; ≤0.015 to ≥512 mg/L).

EUCAST has no breakpoints for macrolides against H. influenzae, 
citing conflicting evidence in respect of efficacy, but does indicate 
ECOFFs of 16 mg/L for erythromycin and 32 mg/L for clarithromycin. 
We found MICs exceeding these values for <2% of isolates in the 
case of erythromycin (mode MIC, 4; range ≤0.03 to ≥512 mg/L), 
which was tested every year until 2014/15, and <1% for 

(a) (b)

Figure 6. Continued
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clarithromycin (mode, 4; range, 0.06 to ≥128 mg/L), which was 
tested only from 1999/2000 to 2002/03.

M. catarrhalis
A total of 6309 M. catarrhalis isolates were collected: 403–461 per 
season from 1999/2000 to 2007/08 and 190–270 in each of the 
following 11 seasons. β-Lactamases were detected, using nitro
cefin, in 94% of these isolates (see Tables S2 and S5). 
Fluoroquinolone resistance, detected using nalidixic acid as a 
screen, was seen in fewer than 1% of isolates, with no notable 
trends over time. MICs of all antibiotics were determined at 
high inoculum (c. 106/spot), in accordance with BSAC and 
EUCAST guidance.17

Co-amoxiclav, ciprofloxacin, erythromycin and tetracycline 
MICs were determined in 18 seasons (omitting 2001/02 and 
2003/04 for financial reasons). All these antibiotics had resist
ance rates below 1%, without trends. MIC modes and ranges 
were co-amoxiclav (0.12; ≤0.001 to 0.5 mg/L), ciprofloxacin 
(0.03; 0.008–0.03 mg/L), erythromycin (0.06; 0.008–2 mg/L) 
and tetracycline (0.5; 0.06 to ≥16 mg/L) (see MIC distributions 
in Appendix to Supplementary Data). Based on fewer (8–12) 

seasons’ data, minimal resistance rates also were seen for 
cefotaxime (mode 0.5; range 0.015–2 mg/L), cefuroxime (1; 
0.06–16 mg/L) and minocycline (0.12; 0.015–0.5 mg/L) and 
over 3–4 seasons for clarithromycin, levofloxacin and moxifloxa
cin. MIC modes and ranges for seven agents lacking breakpoints, 
tested in 3–9 seasons, were amoxicillin (16; 0.002 to ≥512 mg/L), 
ampicillin (16; 0.002 to ≥512 mg/L), cefaclor (4; 0.03–128 mg/L), 
ceftaroline (4; ≤0.002 to ≥8 mg/L), ceftobiprole (1; 0.008 to 
≥8 mg/L), tigecycline (0.12; 0.03–0.5 mg/L) and trimethoprim 
(16; 1 to ≥1024 mg/L).

Despite the high susceptibility rates for β-lactams other than 
ampicillin, strong β-lactamase-related MIC effects were seen 
for many compounds, as illustrated in Figure 6. For cefuroxime, 
the ratio of modal MICs for β-lactamase-producing versus non- 
producing isolates was 2-fold (1 versus 0.5 mg/L) compared 
with 8-fold for cefotaxime (0.5 versus 0.06 mg/L), 16-fold for 
cefaclor (4 versus 0.25 mg/L), 32-fold for co-amoxiclav tested 
at 2:1 ratio (0.5 versus 0.015 mg/L), 64-fold for ceftobiprole (1 ver
sus 0.015 mg/L) and 512-fold for ceftaroline (4 versus 0.008 mg/L). 
Co-amoxiclav, as tested with a fixed 2 mg/L clavulanate from 2015/ 
16 to 2018/19, is omitted from this list and Figure 6 because, at 
2 mg/L, clavulanate alone inhibited 7% of M. catarrhalis isolates.

(a) (b)

Figure 6. Continued
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Discussion
There is little shortage of effective agents against the typical 
agents of CA-LRTI in the UK and Ireland. Co-amoxiclav retained 
activity against all except 1/5469 (>99.9%) M. catarrhalis tested 
and against 13 228/13 526 (97.8%) of H. influenzae, although 
against only 1148/1263 (90.9%) in the final 3 years, reflecting 
the recent expansion of BLNAR isolates. Amoxicillin was active 
against 98.4% of S. pneumoniae overall and 96.4% in the final 
3 years, with only 12/10 881 showing substantive penicillin resist
ance. Cefotaxime retained activity against 99.5% of the 13 526 
H. influenzae collected, against all 2319 M. catarrhalis isolates 
tested during the eight seasons that it was included, and against 
10 875/10 881 (99.9%) pneumococci. Levofloxacin and moxi
floxacin were only tested in a few of the surveillance years, re
flecting their limited adoption for CA-LRTI in the UK; 
importantly, though, both these fluoroquinolones retained activ
ity against over 99% of isolates of each of the three species 
whenever they were tested including, most recently, in 2015/ 
16 (moxifloxacin) and 2018/19 (levofloxacin). Tetracycline re
tained activity against over 98% of isolates of the two 
Gram-negative pathogens, with significant resistance (14.5% 
averaged over the final three surveillance years) only in S. pneu
moniae. Among newer agents, both ceftaroline and ceftobiprole 
had excellent activity against S. pneumoniae, with MICs related to 
those of cefotaxime but slightly lower (see also Horner et al.16). 
Both also had universally low MICs for H. influenzae isolates.

Despite this reassuring picture, there are undercurrents of 
concern in respect of all three species: serotype-associated 
shifts for S. pneumoniae; rising proportions of BLNAR and high
ly-ampicillin-resistant β-lactamase producers in the case of 
H. influenzae, and the large MIC differentials between β-lactamase 
producers and non-producers for newer cephalosporins in the 
case of M. catarrhalis.

In the case of S. pneumoniae, the apparent slow uptrends in 
resistance to macrolides, tetracyclines and reduced susceptibility 
to penicillin illustrated in Figure 2 disguise a substantial switch in 
the serotypes involved—as discussed more fully elsewhere in this 
Supplement.11 In 2006/07—the sole pre-2013/14 year when 
serotyping was undertaken—most antibiotic-resistant pneumo
cocci belonged to Serotypes 6B, 9V, 14, 19F and 23F. These all 
lie within the spectra of PCV7 and PCV13, which were deployed 
in children in 2006 and 2010, respectively.9 Among these five 
vaccine-covered types, only 19F remained prominent from 
2013/14 onwards, when serotyping of respiratory pneumococci 
became part of the agreed BSAC CA-LRTI protocol. 
Subsequently, continuing to 2018/19, the types most associated 
with resistance to macrolides and tetracyclines and reduced sus
ceptibility to penicillin were Serotypes15A (especially), 23B, 33F 
and 35B, which are covered by neither PCV7 nor 13, along with 
serotype 3 and 19A, which are within the spectrum of PCV13, 
but not PCV7.

Owing to these shifts, the percentage resistance plots on 
Figure 2 should be read not as straightforward trends but, rather, 
as the overlapping of two of more resistance peaks, the earlier 
one composed of PCV7 types and the later comprising non- 
vaccine types, particularly 15A and 35B, along with those PCV7/ 
13 types that have either evaded PCVs to some degree or have 
been suppressed less effectively in pneumonia than in invasive 

infections, notably serotypes 3, 19A and 19F.18 Overall, the preva
lence rates of resistance to macrolides, tetracyclines and reduced 
susceptibility to penicillin are now higher in CA-LRTI than among 
invasive isolates, as discussed elsewhere,19 reflecting the fact 
that serotype 15A, often multiresistant, has become one of the 
most prevalent serotypes in CA-LRTI, whereas invasive infections 
now substantially involve rarely-resistant serotypes, notably 8 
(especially), 12F and 22F.11 Also of note, the proportion of 
macrolide-resistant pneumococci from CA-LRTI that were resist
ant to clindamycin rose markedly, from 44% in 2005/06 to 76% in 
2013/15 to 2018/19. This likely reflects an increasing proportion 
of macrolide resistance in recent years being attributable to 
erm genes, encoding methylases that modify the ribosome to 
block binding of both macrolides and clindamycin rather than 
mef genes, which encode macrolide-specific efflux pumps that 
do not recognize lincosamides.20 Direct evidence for this asser
tion is that erm(B) genes are prevalent in multiresistant serotype 
15A21 whereas the mef genes cause most macrolide resistance 
in serotype 14,22,23 which was the most frequent serotype for 
macrolide resistance in the 2006/07 ‘snapshot’. It is notable 
that most of the few fully penicillin-resistant pneumococci col
lected (9/12) came from Ireland: EARS-net data consistently 
show higher rates of this resistance among bloodstream 
pneumococci in Ireland than the UK.24 However, the BSAC sur
veillance had too few sites in Ireland to support robust analysis 
of this aspect.

Turning to H. influenzae, two important shifts are evident: 
first, the rise in BLNAR, affecting susceptibility rates for both 
amoxicillin and co-amoxiclav from around 2013 and, second, 
from slightly earlier, an expansion of highly amoxicillin-resistant 
β-lactamase-producing isolates with MICs  ≥ 64 mg/L. It might 
be suspected that these shifts reflected the near-concurrent 
(2013/14) transfer of the LRTI Programme from LGC to PHE 
(now UKHSA), but this interpretation seems unlikely for two rea
sons. First, because, while a change in central laboratory might 
lead to a step change in the proportion of isolates scored as bor
derline resistant, it cannot reasonably account for a rising resist
ance trend across multiple subsequent years and, second, 
because modal MICs for multiple antibiotics, including amoxicillin 
and co-amoxiclav, did not change between the pre- and post- 
move periods (Figure 5). Accordingly, we believe the identified 
trends to be genuine.

Without genotyping, it is impossible to say whether these re
sistance shifts in H. influenzae reflect repeated emergence of new 
resistance or clonal expansion. BLNAR substantially owe their 
resistance to changes in PBP3,25 sometimes augmented by 
up-regulated efflux.26,27 Clonal spread of strains with these me
chanisms has been reported in Japan,28 Norway,29 Sweden30 and 
Spain31 whereas polyclonal expansion has been recorded in 
Japan32 and Czechia,33 with patterns complicated by potential 
strain-to-strain transformation of ftsI, encoding the modified 
PBP3.34 In the case of rising high-level amoxicillin resistance 
among β-lactamase producers, the likely mechanism is in
creased β-lactamase production, given the continued full suscep
tibility to co-amoxiclav, which would be compromised by PBP or 
reduced uptake.

In the case of M. catarrhalis, 94% of isolates were found to 
produce β-lactamase, compared with 90.7% in a multicentre 
UK survey performed in 1991.35 The modal MIC of ampicillin in 
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the BSAC surveillance was 8–16 mg/L. This is 4- to 8-fold higher 
than the geometric mean MIC of 2 mg/L, also determined with a 
106 cfu/spot inoculum, found by Yeo and Livermore36 for iso
lates from the 1991 collection with BRO-1, which is considerably 
the predominant β-lactamase in the species. A geometric mean 
MIC of 16 mg/L was only found at a 10-fold higher inoculum. 
Although Yeo and Livermore36 cite geometric mean rather 
than mode MICs, these parameters should approximately 
match given the symmetrical MIC distributions illustrated in 
Figure 6. As with H. influenzae, a plausible explanation for higher 
MICs is a shift towards isolates producing more β-lactamase 
and consequently expressing greater resistance. Again, this 
would require direct assays of β-lactamase-specific activity for 
confirmation.

The other striking features of the M. catarrhalis data are the dif
ferentials between the modal MICs for β-lactamase -producing 
and -non-producing isolates. While this ratio was as low as 
2-fold for cefuroxime, confirming previous results,36 it rose to 
16–32-fold for co-amoxiclav, cefaclor and cefotaxime, 64-fold 
for ceftobiprole and 512-fold for ceftaroline, compared with 
2048-fold for ampicillin. The high ratio for ceftaroline is in keeping 
with the large inoculum effect recorded by Citron et al.37 While 
this phenomenon raises obvious concerns, we can find no record 
of ceftaroline treatment failure associated with M. catarrhalis al
though, unhelpfully, the species was not noted among the patho
gens recorded in the licensing and subsequent trials.38,39 There 
also is a view that β-lactamase-producing M. catarrhalis can exert 
an ‘indirect pathogenicity’ by protecting co-present S. pneumo
niae (or other organisms) in mixed respiratory communities,40

but there is no evidence that this is significant for ceftaroline 
which, according to the particular study and analysis, achieved 
non-inferiority or slight superiority to ceftriaxone in community 
pneumonia trials.38

The results of this surveillance raise few concerns about the 
future treatability of CA-LRTI. Although serotype-related resist
ance shifts are occurring in respiratory pneumococci and both 
BLNAR and highly amoxicillin-resistant H. influenzae are becom
ing more frequent, there is no shortage of near-universally active 
agents against these species. In the case of M. catarrhalis, there is 
no evidence that the β-lactamase lability of newer cephalospor
ins is associated with clinical failure.
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