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Abstract
Using qualitative reasoning and epistemic graphs,
we introduce a simulation-based framework
for modeling epistemic divergence in human-
generative artificial intelligence (GenAI) interac-
tion. Human and GenAI agents maintain a sym-
bolic framework of beliefs and causal/correlation
(e.g., Chain-of-thought reasoning) knowledge,
which guides their decisions toward shared goals.
Through simulation, we show how misaligned
beliefs and knowledge lead to persistent action
divergence, signaling epistemic risk. By formaliz-
ing these belief structures as graphs, we provide a
transparent method for diagnosing misalignment.
Our results suggest the value of epistemic mod-
eling for improving interpretability and safety in
collaborative artificial intelligence (AI) systems.

1 Introduction
This paper presents a formal approach to modeling and an-
alyzing epistemic divergence [Lycett and Partridge, 2009] in
human–generative AI (GenAI) interaction through the lens
of qualitative reasoning and epistemic game theory. We pro-
pose a novel simulation framework based on epistemic graphs
[Van Benthem, 2011], where human and GenAI agents
maintain distinct belief structures about causal/correlation
(e.g., Chain-of-thought reasoning) relationships in the world.
These epistemic graphs encode knowledge, beliefs, and rea-
soning rules, allowing each agent to select actions intended to
achieve shared goals under incomplete and potentially con-
flicting assumptions. Each agent maintains an individual
epistemic graph Gi = (Vi, Ei) where: Vi represents nodes
corresponding to epistemic entities such as facts, beliefs, rea-
soning rules, goals, and unknowns. Ei denotes directed edges
encoding relationships such as belief dependencies, reason-
ing links, or inference pathways. The graph might have
no edges if there are no groundings, dependencies, or rea-
soning alignments. In epistemic graph visualization [Tan et
al., 2021], traditional ’x’ and ’y’ axes often don’t apply as
node positions are algorithmically determined, and coordi-
nates lack semantic meaning. Through iterative simulation,
we demonstrate how asymmetries in epistemic models, par-
ticularly divergent reasoning beliefs, can lead to consistent

misalignment in decision-making, thereby posing epistemic
and behavioral risks. We define a formal metric for epistemic
risk through qualitative reasoning, identify critical cases of
reasoning divergence, and validate the model with automated
logging and graph visualization.

2 Related Work
Understanding and mitigating epistemic divergence in
human-GenAI interaction system has been a focal point in
recent research across artificial intelligence, explainable AI,
and cognitive modeling. Formal foundations in epistemic
logic [Castañeda, 1964; Pailthorp, 1967; Baltag et al., 2018]
provide essential tools for representing knowledge, belief,
and interaction dynamics. In AI safety literature, epistemic
misalignment has been identified as a critical factor under-
lying emergent failure modes in machine learning systems
[Amodei et al., 2016; Dung, 2023]. Causal reasoning, par-
ticularly within the framework of do-calculus [Pearl, 2012],
offers formal mechanisms to represent and infer cause-effect
relationships. Recent advances in interpretable models have
used causal structures to improve transparency and reliability
in decision-making systems [Madumal et al., 2020; Wei et
al., 2022]. However, relatively few works explicitly address
the implications of conflicting reasoning models between hu-
mans and AI agents, especially in dynamic interaction sce-
narios. In parallel, epistemic game theory [Aumann, 1999;
Brandenburger, 2010] has modeled belief-based reasoning in
multi-agent systems with incomplete or asymmetric informa-
tion. Our work builds upon these foundations by integrat-
ing logic for reasoning about incomplete knowledge [Baner-
jee and Dubois, 2014], qualitative reasoning [Kuipers, 1994]
and epistemic game theory [Perea, 2012] into a dynamic sim-
ulation, providing a novel perspective on the reasoning and
behavioral consequences of epistemic divergence [Lycett and
Partridge, 2009] in human-GenAI interactions.

3 Method
Our method aims to formally demonstrate how epistemic di-
vergence, that is differences in belief or knowledge between a
human and a GenAI system, can lead to action divergence and
consequently pose interactional risk, even when agents share
the same goals. Our approach integrates tools from epistemic
logic, qualitative reasoning, and formal proof theory to model



and analyze this risk. First, we define the concept of epis-
temic divergence and associated risk in Human-GenAI inter-
action. Let AH and AG be two agents: the Human and the
GenAI system, C be a goal both agents aim to achieve, Bi be
the belief set of agent Ai, and Ki ⊆ Bi the knowledge set,
then CAUSE(x, y) ∈ Bi defines causal beliefs, and means
agent Ai believes action x causes outcome y. An action func-
tion (DO(x)) defined by ai = f(Ki, goal), determines the
action chosen by agent Ai. The risk function is defined as
follows:

Risk(AH , AG) =

{
HIGH if aH ̸= aG
LOW if aH = aG

Assumptions Following assumptions (A1-A5) are based
on the empirical observations of generative AI success and
failures. These assumptions are based on the understanding
that although intelligent agents (e.g., GenAI) can be viewed
as autonomous [Luck et al., 2003] in the sense of identifying
or pursuing goals, they rely on human goals and other values
incorporated into their design, training, and testing, and are,
as such, dependent on human agents’ goals. It is fair to as-
sume that they have a common goal. For example, Terblanche
et al. [2022] found that an artificial intelligence coach was
as effective as human coaches at the end of the trials. We
also assume that GenAI is unable to explicitly represent real-
world scalable reasoning (e.g., causal/correlation) structures,
update their beliefs or simulate interventions (’what if?’), as
the GenAI cannot propose real-world scalable reasoning al-
ternatives [Vallverdú, 2024; Zhou et al., 2025].
A1. Agents (AH and AG) share a common goal: goal = C

A2. Agent AH believes CAUSE(A,C) ∈ BH
A3. Agent AG believes CAUSE(B,C) ∈ BG
A4. KH = {CAUSE(A,C)} and KG = {CAUSE(B,C)}
A5. Agent AG and AH cannot update the reasoning or be-

liefs
Theorem If agents AH and AG have incompatible causal
beliefs about how to achieve a shared goal C, then their ac-
tions could diverge, leading to high epistemic risk.

Proof. Given empirical evidence of AI failures [Liu et al.,
2023; Borji, 2023], we consider the case of incompatible be-
liefs:

Since goal = C for both agents, they act to achieve C using
their respective causal knowledge.

From KH = {CAUSE(A,C)}, we have:
aH = DO(A)

Similarly, from KG = {CAUSE(B,C)}, we have:
aG = DO(B)

Action divergence occurs since A ̸= B:
aH ̸= aG

Since aH ̸= aG, by the definition of the risk function:
Risk(AH , AG) = HIGH

This formalization demonstrates that aligned goals with di-
vergent causal beliefs is sufficient to produce action diver-
gence (aH ̸= aG) and elevate epistemic risk (HIGH).

4 Experimental Setup (Simulation)

Algorithm 1 Epistemic Simulation of Human–GenAI Inter-
action

1: Input: World statesW , initial beliefs BH , BG, goal C
2: Initialize: Agents AH (Human), AG (GenAI) with goals

and beliefs
3: for each timestep t = 1 to T do
4: Sample current world wt ∈ W
5: for each agent Ai ∈ {AH , AG} do
6: Observe partial facts from wt and update Bi
7: Update knowledge set: Ki ⊆ Bi
8: Construct possible world graph: Gi =

EpistemicGraph(Ki,W)
9: Extract causal model from Ki: Ci = {(x, y) |

CAUSE(x, y) ∈ Ki}
10: Select action ai such that (ai, C) ∈ Ci, if possible
11: if aH ̸= aG or KH ̸⊆ KG then
12: Risk← HIGH
13: else
14: Risk← LOW
15: Log ⟨t, wt,KH ,KG, aH , aG,Risk⟩
16: Update beliefs: Bi ← Bi∪{UNKNOWN(ft)} for AH

and AG

17: Output: Simulation log and epistemic models

To complement the formal proof, we implement a proto-
type algorithm using simulated agents with injected asym-
metric beliefs, logging of decisions and risk assessment.
The simulation empirically confirms the theoretical result
of epistemic divergence leads to consistent risk due to ac-
tion mismatch. We construct a discrete-time simulation to
model epistemic divergence between two agents: a human
agent (AH ) and a GenAI agent (AG). Both agents op-
erate in a shared environment and aim to achieve a com-
mon goal C, but they are initialized with conflicting rea-
soning and beliefs. The human believes that A causes C
(CAUSE(A,C)), while the GenAI agent believes that B
causes C (CAUSE(B,C)) through correlation or relevant
reasoning approach (e.g., Chain-of-thought reasoning). The
true causal structure remains latent and is not directly acces-
sible to either agent.

At each time step t, the environment Wt reveals a set
of observable facts. Each agent updates its internal belief
base Bi with new observations and maintains a knowledge set
Ki ⊆ Bi containing trusted propositions. However, reason-
ing beliefs are held fixed throughout the simulation; agents
do not revise their assumptions about reasoning. If there is no
further training of the agents was conducted between the time
steps, it is unlikely that their belief will change. Each agent
selects an action using a deterministic policy that maps their
belief base to the action expected to produce C.

A symbolic epistemic graph [Van Benthem, 2011] is gener-
ated at each time step 0-3 to capture the current state of each
agent’s beliefs. The simulation logs the observed world state,
the belief and knowledge sets of both agents, their selected
actions, and a binary risk indicator computed as:



Table 1: Epistemic Simulation Log of Human–GenAI Interaction (Timestep Data (t=0 to t=4))

t W KH KG BH BG AH AG Risk
0 {C, B} {C, CAUSE(A,C), B} {C, CAUSE(B,C), B} {CAUSE(A,C), B, C, A, UNKNOWN} {CAUSE(B,C), B, C, A, UNKNOWN} DO(A) DO(B) HIGH
1 {A, B} {C, A, CAUSE(A,C), B} {C, A, CAUSE(B,C), B} {CAUSE(A,C), B, C, A, UNKNOWN} {CAUSE(B,C), B, C, A, UNKNOWN} DO(A) DO(B) HIGH
2 {C, A} {C, A, CAUSE(A,C), B} {C, A, CAUSE(B,C), B} {CAUSE(A,C), B, C, A, UNKNOWN} {CAUSE(B,C), B, C, A, UNKNOWN} DO(A) DO(B) HIGH
3 {A, B} {C, A, CAUSE(A,C), B} {C, A, CAUSE(B,C), B} {CAUSE(A,C), B, C, A, UNKNOWN} {CAUSE(B,C), B, C, A, UNKNOWN} DO(A) DO(B) HIGH

(a) Human’s Epistemic
Model

(b) GenAI’s Epistemic
Model

(c) Possible misalignment: causal reasoning vs. statistical
correlations or symbolic reasoning (e.g., Chain-of-thought

reasoning [Wei et al., 2022])

Figure 1: Epistemic Models of GenAI and Human’s World States (W) showcasing possible misalignment

Risk(t) =
{

HIGH, if AH(t) ̸= AG(t)

LOW, otherwise
Ambiguous facts (e.g., UNKNOWN(NEW FACT)) are occa-

sionally introduced to simulate partial observability or infor-
mational noise. However, such facts are not used to update
reasoning models in the current experimental design. The
simulation is implemented in Python following Algorithm
1 using the networkx library for representing epistemic
structures and and possible misalignment in Fig. 1. It exe-
cutes over a fixed time horizon of four steps. Each run gen-
erates a log table in Tab. 1 containing the full state of both
agents, to showcase the belief divergence, action choice, and
associated risk metrics.

5 Analysis and Discussion
Table 1 shows the simulation results demonstrating a per-
sistent epistemic divergence between a human agent (AH )
and a GenAI agent (AG) across four time steps, despite
both agents operating in identical environments and pursu-
ing a shared goal C. Each agent was initialized with a dis-
tinct reasoning belief: AH believes that action A causes C
(i.e., CAUSE(A,C)), whereas AG believes that B causes C
(i.e., CAUSE(B,C)). Despite receiving the same sequence
of world states (e.g., {C,B}, {A,B}, {C,A}), both agents
persistently act in accordance with their internal reasoning
models. The human consistently selects action A, while the
GenAI agent selects B, indicating a complete lack of con-
vergence in either beliefs or behavior. Throughout the sim-
ulation, the Risk metric is flagged as HIGH at each time
step, as the agents’ selected actions diverge. This confirms
the hypothesis that reasoning model asymmetry alone is suf-
ficient to induce persistent behavioral misalignment. No-
tably, both agents observe a new ambiguous fact (represented

as UNKNOWN(NEW FACT)) at each step, but neither revises
their core belief. This suggests an absence of mechanisms for
reasoning belief revision or mutual epistemic reconciliation,
despite ongoing perceptual updates.

The simulation results corroborate the theoretical proof of
epistemic divergence risk established earlier in this study.
When agents are epistemically misaligned—particularly with
respect to causal structure, shared data and goals, do not
guarantee behavioral convergence. This has significant im-
plications for human–genAI interaction, especially in safety-
critical or collaborative settings. Systems that rely solely on
aligned outputs or behavior without addressing underlying
model assumptions may produce consistent but conflicting
behaviors relative to human expectations.

From a design perspective, these findings suggest the im-
portance of reasoning alignment and epistemic transparency
in AI systems. Future architectures must not only allow for
shared goal representations but also support explicit mecha-
nisms for reasoning model sharing and revision.

6 Conclusion
Through a formal proof and a simulation we empirically val-
idate the proposition that unresolved epistemic divergence,
particularly in reasoning, constitutes a persistent and high-
risk factor in human–GenAI interaction. The results advocate
for a shift in focus from behavioral (pattern based) to epis-
temic alignment in the development of collaborative AI sys-
tems.
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