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Evolution of breathers with spectrally skewed forcing and damping

Alberto Alberello®” and Emilian Piriu
School of Engineering, Mathematics and Physics, University of East Anglia, NR4 7TJ Norwich, United Kingdom

® (Received 23 May 2025; accepted 3 September 2025; published 1 October 2025)

Slowly modulated nonlinear waves are accurately described in the framework of the conservative nonlinear
Schrodinger equation (NLS). However, in many physical systems, the wave evolution is affected by energy gains
and losses, therefore requiring introduction of forcing or damping in the NLS framework. Here, we analyze
the idealized case in which the forcing term varies linearly with frequency such as the growth rate of positive
components matches the decay rate of the negative ones. We reveal that the system is linearly unstable and prone
to overall energy growth. The evolution of classical breather solutions is showcased in this framework. The most
notable effects are the distortion of the breathers, which speed-up, and in the case of the Kuznetsov-Ma breather
results in faster recurrence. Concurrently, spectral asymmetry between low and high frequency components

develops.

DOL: 10.1103/7ykg-j215

I. INTRODUCTION

The nonlinear Schrodinger equation (NLS) is widely used
across numerous physical systems to model the dynamics of
the slow modulation of weakly nonlinear, dispersive, wave
packets [1]. Applications of the NLS span optics [2-5],
quantum dynamics [6-8], ocean dynamics [9,10], and meta-
materials [11]. Within the NLS framework, breather solutions,
which are periodic solutions in time or space and localized
in space and/or time, have been thoroughly studied [12-15].
Unlike solitonic solutions that emerge from a zero background
at infinity, breathers emerge from perturbation of the uniform,
nonzero, background and are an archetype for weakly nonlin-
ear dispersive wave packets as they are observed nature.

External forcing (positive and/or negative) affects the wave
dynamics in many real-world physical systems. For example,
in the context of ocean waves, loss is associated to viscous-
like attenuation at the interface [16—18] and gain to wind
input [19,20]. Such effects have been introduced in the NLS
framework by including a homogeneous forcing (or damping),
also in the context of the higher-order NLS [21-23]. Forcing
(and damping) is a linear operator [24] which leads to net
energy gain or loss depending on the sign of the forcing
[19,20]. Within this context, Onorato and Proment [20] found
approximate rogue wave solutions of classical breather solu-
tions (Peregrine [14], Kuznetsov-Ma [12,13], and Akhmediev
[15,25]) and, as also shown in Segur ef al. [17] and Kharif
et al. [19], found that forcing (damping) destabilizes (stabi-
lizes) modulational instability.

However, forcing can be heterogeneous (e.g., frequency-
dependent) as in the case of waves in sea ice [26-30], optical
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cavities [4], nonlinear optics [31], Bose-Einstein condensates
[3], plasma [7], and metamaterials [11]. Humphries et al. [23]
considered the case of heterogeneous loss counterbalanced by
homogeneous gain such as the system energy is conserved
and focused on the evolution of solitonic solutions. Even in
a conservative system, the net imbalance between high and
low frequencies was found to generate a richer dynamics.

Here, we build on the theoretical work of Slunyaev
and Stepanyants [30] in which the heterogeneous forcing
in the NLS was derived rigorously by expansion of the
frequency-dependent term, therefore, obtaining a homoge-
neous (constant) forcing plus an heterogeneous part which
varies linearly with frequency. Similarly to Eeltink et al. [22],
in this study we suppress the homogeneous forcing, but, un-
like them, in our system the decay rate of high frequency
is balanced by an equal but opposite growth rate of low
frequencies at the leading order (and not at higher order).
It is in this framework, that is fundamentally different from
the one of Onorato and Proment [20] in which forcing was
assumed to be homogeneous, that we analyze the evolution
of archetypical breather solutions (Peregrine, Kuznetsov-Ma,
and Akhmediev).

II. FORMULATION

In dimensionless form, the NLS with (negative) forcing
reads

iy + VYer +21Y 12 = —iDy, (1)

where D > 0 is the dimensionless attenuation rate along x. In
the case of frequency-dependent damping D is a function of
frequency detuning [D(w); higher frequencies are subjected
to stronger attenuation—note that w is the spectral variable for
7], of the type Dyw" [28] where Dy and n are constants and
depend on the specific physical process.

The forcing D(w), following Slunyaev and Stepanyants
[30], can be replaced by the first two terms of its Taylor series.
Moreover, using the correspondence between the dispersion
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relation and linear partial differential equation (w — i9/97)
it can be rewritten as

Yy + Yoo + 2117 = —iDoyr + nDoyr,. )

Note that this equation [Eq. (2)] matches the formulation
of Slunyaev and Stepanyants [30] (the transformation in di-
mensional form for the water waves problem is presented in
Appendix).

Since we are interested in only the heterogeneous part, we
suppress the homogeneous (frequency-independent) part of
the forcing (—iDy; in practice this is achieved by imposing
a forcing of opposite sign). A similar assumption was made
in Eeltink et al. [22] for their leading-order term. Within
this framework, the carrier frequency (w = 0) is subjected to
neither forcing nor damping.

Without loss of generality, we consider n = 1 which cor-
responds to a linearly varying forcing with the frequency
(positive for negative frequencies and negative for positive
frequencies assuming Dy > 0). The resulting equation is

Yy + Ve + 21012y = Doy, 3)

It is worth nothing that the right-hand side (RHS) in Eq. (3)
resembles the higher-order forcing and damping in Eeltink
etal. [22]. However, the most striking difference is that in their
framework this term (the t derivative for forcing and damp-
ing) only appears at higher order in wave steepness to match
their higher-order NLS whereas in our framework it already
appears at order O(1). Therefore, in Eeltink er al. [22] the
differential growth and decay of frequency components across
the spectrum (and the ensuing spectral asymmetry and down-
or up-shift) is a higher-order effect, but in our framework, and
similarly in Slunyaev and Stepanyants [30] and Humphries
et al. [23], it is a leading-order effect.

While the stability or instability of the NLS equation under
homogeneous damping ajd forcing has been extensively stud-
ied [17-19], it is instructive to retrieve the dispersion relation
of the proposed model, i.e., Eq. (3), that reads

k(w) = o + Doiw — 2|Y I, 4)
and linearizing
k(w) = o* + Dyiw (5)

in which we note that an imaginary part is, in general, always
present as expected for a nonconservative system and indi-
cates growth (assuming Dy > 0).

III. NUMERICAL EXPERIMENTS

Classical breather solutions are given by rational solu-
tions of the NLS, nominally the Peregrine, Akhmediev, and
Kuznetsov-Ma breathers [20,32]. The Akhmediev breather
describes the full growth-return cycle that starts with modula-
tion instability at x — —oo, where the solution corresponds
to the plane wave [32], reaches maximum amplification for
x =0, and returns to a plane wave solution at x — 4o00.
The Akhmediev breather is periodic in 7, the Kuznetsov-Ma
breather is localized in t and periodic in . The Peregrine
breather, which can be seen as an extreme Akhmediev and
Kuznetsov-Ma when periodicity tends to infinity, is doubly
localized in time and space.

The Peregrine, Akhmediev, and Kuznetsov-Ma breather
solutions are

4(1 4+ 4iy) .
= —= 1 2ix), 6
Y [1+412+16X2 ]exp( ix) ©)
Un = v3 cosh(o x) + ivo sinh(o x)
AT 2vcosh(o x) — o cos(vt)

— 1i| exp(2ix), (1)

w3 cos(px) + ipwp sin(px)
2pcos(px) — pcosh(ut)

Ykm = [ + 1} exp(Zix), (8)
where 0 = v4/4 —v2 (with 0 < v < 2) and p = /4 + u?
(with @ > 0). The maximum amplification for the Pere-
grine breather is 3, for the Akhmediev breather AFy =
1++/4—v2, and for the Kuznetsov-Ma AFxm =1+
V4 + p?. Tt is worth noting that AFp = lim,,,0 AFgkm(®) =
lim,_,g AF4(v) (see [33]).

We perform numerical simulations of the breather solu-
tions. Given ¥y = ¥ (x = xo), obtained from the analytical
breather solution [Egs. (6)—(8)], the evolution ¥ () can be
effectively simulated with the split-step method

V(x4 dx) = F el 2Pooi?ldx F 2Py 0]y (9)

in which F and F~! denote the Fourier transform and its
inverse, i.e., F{y(x, 1)} = lﬁ(x,w). Note that in this nu-
merical implementation the forcing term is part of the linear
operator and therefore efficiently computed in Fourier space.
Numerical simulations will be performed over —7 /2 < x <
4 /2 (discretized with 1536 elements) and —167 < v <
167t (discretized with 1024 elements). The wide domain in
T is chosen to avoid side effects, and the analysis will only
focus on the central portion of the domain.

We will showcase the effect of varying Dy € [0, 6 x
1073, 12 x 1073] to span a range of configurations maintain-
ing the parameter Dy small. A higher value of the parameter
Dy would lead to an explosion of the numerical solution be-
cause, while some spectral components are damped others are
forced, leading to an overall growth as previously observed in
[22] and Humphries et al. [23]. It is also worth noting that for
negative values of Dy the same solution is obtained by apply-
ing the transformation t — —7 (and w — —w). Moreover,
we arbitrarily set v = 1 for the Akhmediev breather, which
yields AFy =1+ V3 2.73, and u = 2 for the Kuznetsov-
Ma breather, which yields AFy = 1 + 24/2 & 3.83.

In the following, we will report the numerical results in the
physical and spectral domain. Invariants of the conservative
NLS, wave action A/, and momentum M will be monitored:

+00
N = / [y *dx, (10)
1 +o<;00
M= 2—1/ WY — P, (11)

where {* denotes the complex conjugate of /.
We also introduce the spectral asymmetry A:

SO Wldew — [ [P ldew
[0 (x = xo)ldo

This quantity measures the energy imbalance between the two
halves of the spectrum.

A(x) = (12)
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FIG. 1. Breather solutions from top to bottom Peregrine, Akhme-
diev, Kuznetsov-Ma with various level of D, from left to right
0,6 x 107,12 x 1073,

IV. RESULTS

The breather solution in the physical space (x, t) is shown
in Fig. 1. When Dy =0, i.e., there is no forcing, as ex-
pected, the evolution corresponds to theoretical expectations
for the Peregrine and Akhmediev, but, for the chosen nu-
merical implementation, the Kuznetsov-Ma slightly deviates
from prediction after the first focusing cycle in our numerics.
Nevertheless, the difference between numerical simulations
from the theoretical predictions are small, and we therefore
choose to proceed with these numerical parameters (we will
later show the wave action, and that is conserved providing
confidence in the numerical results).

When Dy # 0 (second and third columns in Fig. 1) the
most striking difference is the tilting of the breather to-
wards negative T which corresponds to a speed-up of the
solution for Dy > 0. This is the expected outcome for disper-
sive waves when shorter, slower, components are attenuated
while the longer, faster, components gain energy. In the case
of the Kuznetsov-Ma breather is also evident a shortening
of the recurrence. The shortening was also noted by Onorato
and Proment [20] for homogeneous forcing, but, unlike in our
simulations, no speed-up (or slow-down) was observed. The
other notable feature in our simulations for the Peregrine and
Akhmediev breathers is the emergence of a second growth
cycle.

The recurrency of the breather solution appears more
clearly visible in profiles of the solution as shown in Fig. 2(c)
(note that the profiles are extracted at the max, |y ()| rather
than at a constant 7 to better capture the shape of the drift-
ing breathers), where it is also apparent that at subsequent
recurrence cycles the maximum amplification gets reduced,
as observed in Alberello et al. [28] but for dissipation only.

The observed behavior is qualitatively similar to the one
shown by Eeltink et al. [22], however, the key difference is
that in their model the behavior is associated with higher-order
terms in the NLS whereas in ours it is a leading-order effect

Max{|y|}

Max{|g|}

Max{|y[}

iy

NE

FIG. 2. Maximum amplitude of the breather solutions from top
to bottom Peregrine, Akhmediev, Kuznetsov-Ma with various lev-
els of Dy (blue Dy = 0; orange Dy = 6 x 1073; green Dy = 12 x
1073). The black dashed line denotes the maximum amplification.

driven by the spectrally skewed forcing and damping. It could
be argued that in many physical settings it would be preferable
to use a simpler model, like in our approach, with a more
physically based and true-to-reality choice of the forcing and
damping rather than invoking higher-order nonlinearity.

The depiction of the Fourier spectrum (Fig. 3) confirms
the observation made in the physical space. It should be
noted that while the Peregrine and Kuznetsov-Ma breathers
form a pseudocontinuous Fourier spectrum (because a discrete
Fourier transform is applied, strictly speaking, the spectrum is
discrete), the Akhmediev breather shows a discrete spectrum
in Fourier space. It is nevertheless instructive to analyze the
asymmetry of the spectrum (Fig. 4). In these the asymmetry
between positive and negative frequencies when Dy # 0 is
apparent, which is similar for the Peregrine and Akhmediev
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FIG. 3. Spectra of breather solutions from top to bottom Pere-
grine, Akhmediev, Kuznetsov-Ma with various levels of D, from left
toright 0,6 x 1073, 12 x 1073,
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FIG. 4. Spectral asymmetry of the breather solutions from top to
bottom Peregrine, Akhmediev, Kuznetsov-Ma with various levels of
Dy (colors as in Fig. 2).

breathers and clearly increases just before the maximum am-
plification. As expected, positive frequencies have a lower
energy content from their negative counterpart. The differ-
ences are more notable when Dy increases. The asymmetry
emerging for Dy > 0 will lead to a downshift of the spectrum
over longer distance. More complex interactions appear to
be in place for the Kuznetsov-Ma breather for which the
asymmetry undergoes growth and decay cycles while staying
positive.

Finally, it is instructive to analyze some of the conserved
quantities in the classical NLS: the wave action and momen-
tum. These are shown in Fig. 5 where the first column actually
shows the relative variation, i.e., AN = N(x)/N (x0) — 1.
As expected, for the conservative case (Dy = 0) wave ac-
tion is preserved, but when Dy > 0 there is an increase of

1x10~4 AN 1x1073 M
1.04(a) (b)
2 B
0.5 A
0'0 T T T 0 T T T
1x10-3 1x1072
(c) 47(d)
1 B
2 B
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0 T T T 0'0 T T T
T
X

FIG. 5. Relative change in wave action (left) and momentum
(right) of the breather solution from top to bottom Peregrine, Akhme-
diev, Kuznetsov-Ma with various levels of Dy (colors as in Fig. 2).

wave action. To a certain extent this should be expected
because even in the linear regime a energy mismatch be-
tween left and right sidebands emerges, i.e., the energy
gained on one side exceeds the loss on the other. To bet-
ter demonstrate the increase in wave action, we consider
two components at —w@ and 4w, respectively. For these
two components, due to the symmetry of the initial spec-
trum, the initial energy is ./\/Oi‘” = (a")* + (a~)* = 2a} where
ap = |1ﬁ0(:|:w)| and the superscript denotes the components
at £w. In the linear system, applying the growth rate, we
obtain a*(x) = apexp(£Dywy). The corresponding wave
action is N (x) = allexp(—=Dowy )* + exp(+Dowx )*] =
aé 2 cosh (2Dwyx) > 2|ag|* since cosh x > 1 for every x # 0,
therefore, explaining why an increase in wave action along x
is expected. Nevertheless, it is worth noting that the change
in wave action is amplified in the nonlinear regime, and is
between one and two orders of magnitude greater than in
the linear system. The wave action increase is more limited
in the Peregrine breather, while it is almost one order of
magnitude greater for the Akhmediev and Kuznetsov-Ma so-
lutions (the Akhmeniedev breather approximately double the
Kuznetsov-Ma breather). Notably, the growth rate in wave
action seems to increase at every focusing (see in particular
the Kuznetsov-Ma). The momentum, increases when D > 0.
This is also true in the linear regime where momentum in-
creases linearly. However, in the nonlinear regime, there is a
sharp increase at each focusing cycle, i.e., when the amplitude
of the envelope peaks, and the change is two orders of magni-
tude greater than in linear simulations. The variation is similar
in magnitude for the Akhmediev and Kuznetsov-Ma solutions
and much smaller for the Peregrine breather.

V. SUMMARY

We introduced a NLS model with heterogeneous, spec-
trally skewed, forcing in which the zero mode is subjected
to neither forcing nor damping. While highly idealized, the
model has the potential to replicate real-world physical sys-
tems. One of the most remarkable results is that the model
qualitatively replicates features obtained with more complex
models, i.e., the higher-order NLS of Eeltink et al. [22], with-
out the need of including these complexities. Therefore, we
believe that in many applications it would be preferable to
employ a simple model, like the one that we use, and adopt
a more physically inspired choice of forcing.
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APPENDIX: TRANSFORMATION FOR THE WATER
WAVES PROBLEM

Equations (2) and (3) are written in dimensionless form.
For spatial evolution of a wave train in the frame of reference
moving with the group velocity, as needed to better repli-
cate experimental observations, the following transformations
applies:

Do = 5-—D; (A1)

wo
2

T = %r, (A2)
4, 2

X = %x, (A3)
g

14 (A4)

where wq is the angular frequency of the carrier wave, g
gravity, x and ¢ are the spatial and temporal coordinates, u the
envelope amplitude, and Dy the forcing parameter. Note that
the transformation matches the one presented in Slunyaev and
Stepanyants [30] when inertia is absent. The surface elevation
n is obtained from the wave envelope

n(x, 1) = Refu(x, t)etH@ox—ealy (A5)

A note should be added in regard to the value Dy in dimen-
sional form. The value corresponds to small attenuation with
reference to Alberello er al. [28], and is significantly lower
than the one observed in many real-world scenarios for ocean
waves. However, while the absolute value is low, the relative
variation across frequency reflects the one encountered in
many physical problems.
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