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for all inverse semigroups where the building blocks are E
disjunctive.
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Part 1. In the beginning

1. Introduction

In this paper, we are concerned with a natural type of inverse semigroup. Recall that 
a semigroup is just a set with an associative binary operation, and an inverse semigroup 
is a semigroup S where for every x ∈ S there exists a unique x−1 ∈ S such that 
xx−1x = x and x−1xx−1 = x−1. Inverse semigroups have been extensively studied in 
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the literature since their inception. Roughly speaking, the class of inverse semigroups 
lies somewhere between the classes of semigroups and groups, having more structure, in 
general, than semigroups, and somewhat less structure than groups. If S is a semigroup, 
then an equivalence relation ρ ⊆ S×S is a congruence if whenever (x, y) ∈ ρ and s ∈ S, 
it follows that (xs, ys), (sx, sy) ∈ ρ also. Congruences are to semigroups what normal 
subgroups are to groups. In this paper, we are interested in the class of inverse semigroups 
S such that every non-trivial congruence on S relates at least one idempotent to a non
idempotent element of S. Such inverse semigroups are called E-disjunctive; see [34, p. 
III.4] for further information.

In this paper, we study the inverse semigroup theoretic structure of E-disjunctive 
semigroups; give a large number of natural examples; give some asymptotic results es
tablishing the rarity of such inverse semigroups; and prove a general structure theorem 
for all inverse semigroups which can be built from E-disjunctive inverse semigroups.

A congruence is called idempotent-pure if it never relates an idempotent to a non
idempotent. Idempotent-pure congruences have received significant attention since the 
study of inverse semigroups commenced; see, for example, [1,3,16,25,32,33,35]. Intro
duced by Green [12], they preserve much of the important structure of inverse semigroups 
and have multiple equivalent definitions of different flavours. If ρ is a congruence on an 
inverse semigroup S, then the kernel of ρ is the (normal) inverse subsemigroup of S con
sisting of the congruence classes of the idempotents, and the trace is the restriction of 
the congruence to the semilattice of idempotents. Conversely, distinct congruences have 
distinct kernel-trace pairs (see [14, Section 5.3]). Hence idempotent-pure congruences 
are those with trivial kernel, and thus are entirely determined by their restriction to the 
idempotents of a given inverse semigroup.

E-disjunctive inverse semigroups are those with no non-trivial idempotent-pure con
gruences. Every inverse semigroup has an E-disjunctive quotient by its syntactic con
gruence on its idempotents. It is not difficult to show that the symmetric inverse monoid 
is E-disjunctive, and so every inverse semigroup embeds into an E-disjunctive inverse 
semigroup. Slightly more non-trivial is the proof that every inverse semigroup occurs 
as the homomorphic image of an E-disjunctive inverse semigroup (Corollary 4.4), thus 
showing that this class captures a large variety of inverse semigroups.

There are a modest number of papers in the literature about E-disjunctive inverse 
semigroups. The first use of the term that we know of is in Petrich [34] from 1984. Shortly 
after in 1985, Yoshida [40] published a short note on E-disjunctive inverse semigroups, 
where it is shown that the class of E-disjunctive inverse semigroups is closed under 
passing to full inverse subsemigroups; and an alternative definition of E-disjunctivity 
was given. Yoshida also noted that an earlier work of Alimpić and Krgović [1] fully 
classifies when a Clifford inverse semigroup is E-disjunctive through the description 
of idempotent-pure homomorphisms. Additional classifications of E-disjunctivity were 
provided by Li and Zhang [19]. Petrich and Reilly [36], and Gigon [11] have also studied 
E-disjunctivity in the non-inverse case.
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This paper has three parts. In the first, we cover the basic properties of E-disjunctive 
inverse semigroups, and their interactions with the standard notions related to in
verse semigroups (Section 2). These standard notions include: the natural partial order; 
adjoining identities and zeros; and basic closure properties such as direct products (Sec
tion 3). In Section 4 we describe some circumstances under which wreath products are 
E-disjunctive (Proposition 4.2, Theorem 4.3).

In the second part, we consider a compendium of examples of naturally occurring E
disjunctive semigroups. These include the symmetric inverse monoids IX on any set X
with at least 2 elements (see [14, Section 5.1] or the start of Section 5 for the definition, 
and Example 5.1 for the proof of E-disjunctivity); the dual symmetric inverse monoids 
(Section 5 and Example 5.2); some minimal examples of E-disjunctive semigroups with 
certain properties (Example 5.3); an infinite finitely generated Thompson’s group-like 
E-disjunctive inverse monoid ([6] and Theorem 5.5); a proof that the arithmetic in
verse monoid from [13] is E-disjunctive in Theorem 5.7. Graph inverse semigroups arise 
naturally from the study of Leavitt path algebras. Such semigroups have been studied 
extensively in the literature in recent years, see for example [2,15,20,21,27--29,39]. In Sec
tion 6, we characterise the idempotent-pure congruences on graph inverse semigroups in 
Theorem 6.1, and characterise graph inverse semigroups that are E-disjunctive in terms 
of the underlying graphs in Theorem 6.2. In the final section of this part of the paper, we 
characterise the finite monogenic E-disjunctive inverse semigroups (Section 11.1); and 
use this to show that the number of monogenic E-disjunctive inverse semigroups as a 
proportion of all monogenic inverse semigroups of order n is asymptotically 0 (Corol
lary 7.7).

In the third and final part of the paper we consider various structural properties of 
E-disjunctive semigroups. In Section 8, we show that there are fairly restrictive bounds 
on the number of idempotents and non-idempotent elements in finite E-disjunctive semi
groups (Theorem 8.1). We explore the extent to which information about an arbitrary 
inverse semigroup can be recovered from its maximal E-disjunctive image in Section 9. 
In Section 11, we reprove a theorem from [33]1 which provides a means of constructing 
any inverse semigroup from an E-disjunctive semigroup acting on a partially ordered set 
(Theorem 11.3). This theorem implies McAlister’s famous P -theorem from [26] which 
characterises the E-unitary inverse semigroups via groups acting on partially ordered 
sets.

2. Basic properties

In this section we give some of the basic properties of E-disjunctive inverse semigroups. 
We also show how to construct new examples from old: via ideals (Lemma 2.8); full 
subsemigroups (Lemma 2.9); direct products (Proposition 2.10); adjoining a zero or 

1 The authors of the present paper only discovered [33] at a late stage of the preparation of this paper 
and prove the characterization independently. The theorem and its proof are included for the sake of 
completeness.
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Table 1
Numbers of isomorphisms types of inverse semigroups of order n with certain proper
ties; computed using the GAP package Semigroups [31], and [22--24,30].
n inverse E-unitary E-disjunctive E-disjunctive

semigroups [38] (non-semilattice) inverse semigroups inverse monoids
0 1 0 1 0
1 1 0 1 1
2 2 1 1 1
3 5 2 2 2
4 16 6 4 4
5 52 12 8 6
6 208 39 18 15
7 911 120 40 28
8 4,637 483 101 68
9 26,422 2,153 276 165
10 169,163 11,325 761 414
11 1,198,651 67,570 2,422 1,202
12 9,324,047 453,698 7,630 3,458

identity (Corollary 3.3 and Corollary 3.6); zero direct unions (Proposition 3.5); and 
wreath products (Theorem 4.3). We will be using E(S) to denote the set of idempotents 
in an inverse semigroup S.

A congruence ρ on a semigroup S is called idempotent-pure if (s, e) ∈ ρ and e ∈ E(S)
implies that s ∈ E(S).

Definition 2.1 (E-disjunctive). An inverse semigroup S is called E-disjunctive if the only 
idempotent-pure congruence on S is the trivial congruence ΔS .

The numbers of E-disjunctive inverse semigroups of size n for some small values of n
are shown in Table 1.

Recall that if X is any set, then the symmetric inverse monoid IX on X (often written 
In, if |X| = n is finite) consists of the bijections between subsets of X and the operation 
◦ is the usual composition of binary relations. That is, if f, g ∈ IX , then

f ◦ g = {(x, z) ∈ X ×X | there exists y ∈ X such that (x, y) ∈ f and (y, z) ∈ g}.

We may sometimes, arbitrarily, write fg, or f · g, instead of f ◦ g.

Example 2.2. Every group is an E-disjunctive inverse semigroup and symmetric inverse 
monoids on a set X are E-disjunctive if and only if |X| ̸= 1; see Section 5. The free 
inverse monoids and the bicyclic monoid defined by the presentation ⟨b, c | bc = 1⟩ are 
not E-disjunctive; see Section 6 for more details.

A useful tool when studying E-disjunctive inverse semigroups is the syntactic con
gruence with respect to the set of idempotents. This is the maximum idempotent-pure 
congruence on any inverse semigroup, and so will be trivial if and only if the semigroup 
is E-disjunctive.
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Definition 2.3 (Syntactic congruence). Let S be an inverse semigroup. The syntactic 
congruence (with respect to E(S)) ρ on S is defined by (s, t) ∈ ρ if and only if

αsβ ∈ E(S) if and only if αtβ ∈ E(S),

for all α, β ∈ S1 where S1 is the monoid obtained by adjoining an identity to S.
Since the syntactic congruence with respect to E(S) is the only syntactic congruence 

we will be using, we will use the term ``syntactic congruence'' to mean this exclusively.

The following lemma is well-known, we include a proof for completeness. 

Lemma 2.4. If S is an inverse semigroup, then the syntactic congruence ρ on S is the 
largest idempotent-pure congruence on S with respect to containment.

Proof. We first check that ρ is an idempotent-pure congruence. It is immediate from the 
definition that ρ is both a right and left congruence, hence ρ is a congruence. Suppose 
that e ∈ E(S) and (e, s) ∈ ρ. Then 1e1 ∈ E(S), so by the definition of ρ, s = 1s1 ∈ E(S).

Let τ be an idempotent-pure congruence on S, and suppose that (s, t) ∈ τ . Let 
α, β ∈ S1. Then

(αsβ, αtβ) ∈ τ

so as τ is idempotent-pure, αsβ ∈ E(S) if and only if αtβ ∈ E(S). Hence (s, t) ∈ ρ. □
The next lemma relates E-disjunctivity and the syntactic congruence. 

Lemma 2.5 (cf. Remark III.4.15(δ) in [34]). Let S be an inverse semigroup. Then S is 
E-disjunctive if and only if the syntactic congruence is equality.

The next result establishes that every inverse semigroup has an E-disjunctive quotient.

Lemma 2.6. If S is any inverse semigroup, then the quotient of S by the syntactic con
gruence (which is idempotent-pure) is E-disjunctive.

The following lemma provides an alternative means of showing that inverse semigroups 
are E-disjunctive to computing the syntactic congruence. 

Lemma 2.7. Let S be an inverse semigroup. If every idempotent-pure congruence ρ is 
trivial on E(S); that is, for all e ∈ E(S) the congruence class of e is {e}, then S is 
E-disjunctive.

Proof. Let ρ be an idempotent-pure congruence on S. As ρ is idempotent-pure, the kernel 
of ρ is E(S). In addition, as the congruence is the trivial congruence when restricted to 
the idempotents, the trace of ρ is ΔE(S). Thus the kernel-trace method (see for example 
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[14, Theorem 5.3.3]) tells us that ρ must be the trivial congruence. We have thus shown 
that every idempotent-pure congruence on S is trivial, and so S is E-disjunctive. □

We now consider various closure properties of the class of E-disjunctive inverse semi
groups. This class is not closed under taking inverse subsemigroups. For example, every 
inverse semigroup is isomorphic to an inverse subsemigroup of some symmetric inverse 
monoid (by the Vagner-Preston Representation Theorem [14, Theorem 5.1.7]), which is 
E-disjunctive (see Example 5.1).

The class of E-disjunctive inverse semigroups is closed under passing to ideals.

Lemma 2.8. Let I be an ideal of an E-disjunctive inverse semigroup S. Then I is E
disjunctive.

Proof. Suppose that ρ is an idempotent-pure congruence on I. Define the binary relation 
ρ̄ on S by

ρ̄ = ρ ∪ ΔS .

We will show that ρ̄ is an idempotent-pure congruence. It is immediate that ρ̄ is an 
equivalence relation and idempotent-pure. We will show ρ̄ is a congruence. Let s, t, x ∈ S

and suppose sρ̄t. Then s = t, in which case sx = tx and so sxρtx, otherwise sρt, and 
s, t ∈ I. As I is an ideal, sx, tx ∈ I and so sxρtx. Thus ρ̄ is an idempotent-pure 
congruence on S. Since S is E-disjunctive, ρ̄ is trivial, and so ρ is trivial, and I is 
E-disjunctive. □

In the other direction, E-disjunctivity is not closed under passing to inverse super
semigroups, because adjoining an identity and then another identity will result in a 
non-E-disjunctive semigroup. However, a semigroup will be E-disjunctive if it has an 
E-disjunctive full inverse subsemigroup. Recall that an inverse subsemigroup T of an 
inverse semigroup S is full if E(S) = E(T ). We include the proof for completeness.

Lemma 2.9 ([40], Lemma 1). If S is an inverse semigroup with a full E-disjunctive 
subsemigroup T , then S is E-disjunctive.

Proof. Any non-trivial idempotent-pure congruence on S identifies two idempotents of 
S. Thus every non-trivial congruence on S identifies two elements of T . It follows that 
any non-trivial idempotent-pure congruence on S, induces a non-trivial idempotent-pure 
congruence on T , so none can exist. □

Another construction under which E-disjunctivity is preserved is taking finite direct 
products.

Proposition 2.10. Let S1 and S2 be non-empty inverse semigroups. Then S1 and S2 are 
E-disjunctive if and only if S1 × S2 is E-disjunctive.
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Proof. (⇒) Note that E(S1) × E(S2) = E(S1 × S2). Let (e1, e2), (f1, f2) ∈ E(S1 × S2)
be arbitrary.

We show that ᾱ(e1, e2)β̄ ∈ E(S1) if and only if ᾱ(f1, f2)β̄ ∈ E(S1) for all ᾱ, β̄ ∈
(S1 × S2)1 implies that (e1, e2) = (f1, f2). This shows that the trace of the syntactic 
congruence on S1 × S2 is just equality on the idempotents. The kernel of the syntactic 
congruence is E(S1×S2), and congruences of inverse semigroups are determined by their 
kernel and trace (see, for example Theorem 5.3.3 of [14]), this implies that the syntactic 
congruence is equality (as it has the same kernel and trace).

Suppose that the following statement holds for all ᾱ, β̄ ∈ (S1 × S2)1: ᾱ(e1, e2)β̄ ∈
E(S1) ⇐⇒ ᾱ(f1, f2)β̄ ∈ E(S1). We show that e1 = f1, the other coordinate follows by 
symmetry. Let α, β ∈ S1

1 be arbitrary.
By the previous statement, when α, β ∈ S1

(α, e2f2)(e1, e2)(β, e2f2) ∈ E(S1 × S2) ⇐⇒ (α, e2f2)(f1, f2)(β, e2f2) ∈ E(S1 × S2).

In the case that α or β is the identity 1 the above equivalence still holds as (α, e2f2)
and/or (β, e2f2) can be replaced with 1 ∈ (S1 × S2)1 and the resulting statements are 
equivalent. So

(αe1β, e2f2) ∈ E(S1 × S2) ⇐⇒ (αf1β, e2f2) ∈ E(S1 × S2)

and hence αe1β ∈ E(S1) if and only if αf1β. Since α and β were arbitrary and S1 is 
E-disjunctive, it follows that e1 = f1.

(⇐) Suppose that S1 × S2 is E-disjunctive. Let ρ be an idempotent-pure congru
ence on S1. We show that ρ is trivial. Let ρ′ be the congruence on S1 × S2 defined by 
(s1, s2)ρ′(t1, t2) if and only if s1ρt1 and s2 = t2. As ρ′ is idempotent-pure, it follows that 
ρ′ is equality. Hence if S2 is not empty, it follows that ρ is also equality. □

Finally, we will mention the following result in Section 11.

Proposition 2.11 ([18, Proposition 2.4.5]). A congruence ρ on an inverse semigroup S is 
idempotent-pure if and only if ρ is contained in the compatibility relation {(a, b) ∈ S2 |
ab−1, a−1b ∈ E(S)}.

3. The natural partial order, identities and zeros

In this section, we consider the interaction of the notion of E-disjunctivity and the 
natural partial order on any inverse semigroup, and some applications. Recall that the 
natural partial order ≤ on an inverse semigroup S is defined by s ≤ t if there exists 
e ∈ E(S) such that s = et.

We define another partial order ⪯ on an E-disjunctive inverse semigroup S so that 
s ⪯ t if

αsβ ∈ E(S) ⇐= αtβ ∈ E(S)
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for all α, β ∈ S1.

Proposition 3.1. The partial order ⪯ on an E-disjunctive inverse semigroup is equal to 
the natural partial order.

Proof. Let S be an E-disjunctive inverse semigroup, and let s, t ∈ S. Suppose s ≤ t. 
Then s = te for some e ∈ E(S). Let α, β ∈ S1 be such that αtβ ∈ E(S). Then 
αsβ = αteβ ∈ E(S), and s ⪯ t.

Suppose that s ⪯ t. Since t−1t ∈ E(S), t−1s ∈ E(S), and so s−1t ∈ E(S). If α, β ∈
E(S) are such that αsβ ∈ E(S), then αss−1tβ ∈ E(S), and so ss−1t ⪯ s. If α, β ∈ S

are such that αss−1tβ ∈ E(S), then using the fact that s ⪯ t, it follows that αsβ =
(αss−1)sβ ∈ E(S), and so s ⪯ ss−1t. It follows that s is related to ss−1t by the syntactic 
congruence. Since S is E-disjunctive, s = ss−1t, and so s ≤ t. □

The next lemma provides a characterisation of the identity element of an E-disjunctive 
inverse semigroup in terms of the natural partial order ≤.

Lemma 3.2. Let S be an E-disjunctive inverse semigroup, and let e ∈ S be such that 
αeβ ∈ E(S) if and only if αβ ∈ E(S1) for all α, β ∈ S1. Then e is an identity.

Proof. Using Proposition 3.1, e ≥ x for all x ∈ E(S). It follows that xe = x = ex for 
all x ∈ E(S). If x ∈ S \ E(S), then xe = xx−1xe = x(x−1xe) = x(x−1x) = x. Similarly 
ex = exx−1x = xx−1x = x. Thus e is an identity for S. □

A corollary of the previous lemma characterises when an E-disjunctive inverse semi
group S with identity adjoined S1 is also E-disjunctive.

Corollary 3.3. Let S be an E-disjunctive inverse semigroup. Then S1 is E-disjunctive if 
and only if S does not contain an identity.

Proof. (⇒) We prove the contrapositive; that is that if S contains an identity, then S1 is 
not E-disjunctive. Suppose S contains an identity e. Then for all x, y ∈ S1, xey ∈ E(S1)
if and only if xy ∈ E(S1). Similarly, if 1 is the adjoined identity, x1y ∈ E(S1) if and only 
if xy ∈ E(S1) for all x, y ∈ S1. Thus 1 and e are related by the syntactic congruence in 
S1, and so S1 is not E-disjunctive.

(⇐) Suppose that S does not contain an identity. Since S is E-disjunctive, Lemma 3.2
tells us there is no element e ∈ S such that for all x, y ∈ S1, we have xey ∈ E(S1) if and 
only if xy ∈ E(S). However, x1y ∈ E(S1) if and only if xy ∈ E(S1) for all x, y ∈ S1. 
It follows that 1 is not related to any other element of S1 by the syntactic congruence. 
As no two elements inside S are related by the syntactic congruence of S1, we have that 
the syntactic congruence of S1 is equality, and so S1 is E-disjunctive. □

The next lemma is an analogue of Lemma 3.2 where ``identity'' is replaced by ``zero''.
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Lemma 3.4. Let S be an E-disjunctive inverse semigroup, and let e ∈ S be such that 
αeβ ∈ E(S) for all α, β ∈ S1. Then e is a zero.

Proof. Using Proposition 3.1, e ≤ x for all x ∈ S. If x ∈ E(S), then xe ≤ e and ex ≤ e. 
As e ≤ xe and e ≤ ex, it follows that xe = e = ex. If x ∈ S \E(S), then xe, ex ∈ E(S). 
Thus xe = xe2 = e and ex = e2x = e, because we have shown that e acts as a zero when 
multiplied by elements of E(S). In particular, e is a (the) zero in S. □

To obtain the analogue of Corollary 3.3 we prove a more general result.

Proposition 3.5. A 0-direct union of E-disjunctive inverse semigroups (Si)i∈I is E
disjunctive if and only if none of the semigroups Si has a zero.

Proof. (⇒) We prove the contrapositive. Suppose that Si has a zero element 0i for some 
i ∈ I. Then the congruence on the zero direct union generated by the pair (0i, 0) identifies 
only these two elements and is thus non-trivial and idempotent-pure.

(⇐) Let σ be an idempotent-pure congruence on the zero direct union. Suppose for 
a contradiction that there is (a, b) ∈ σ with a ̸= b. Since σ restricts to idempotent-pure 
congruences on each Si, it follows that σ is trivial on each Si. In particular, a and b do 
not belong to the same semigroup Si for any i ∈ I.

Suppose without loss of generality that (a, b) ∈ σ, i ∈ I, a ∈ Si and b ̸∈ Si. Then 
(a, 0) = (aa−1a, ba−1a) ∈ σ. So a is the unique element of Si related to 0 by σ. Since 
σ is a congruence, it follows that the set {a} is an ideal of the semigroup Si. This is a 
contradiction as Si does not contain a zero. □
Corollary 3.6. Let S be an E-disjunctive inverse semigroup. Then S0 is E-disjunctive if 
and only if S does not contain a zero.

4. Wreath products and quotients

In this section we consider when wreath products of inverse semigroups are E
disjunctive and use this to show that every inverse semigroup is a homomorphic image of 
an E-disjunctive inverse semigroup. We think of wreath products in terms of matrices. 
Recall that an element of a wreath product of groups G ≀X H where H ≤ SX consists of 
a pair ((gx)x∈X , h) ∈ (GX , H). We think of the elements of G ≀X H as an X ×X matrix 
M such that the entry indexed by (x, y) ∈ X × X in M is gx whenever (x)h = y and 
0 otherwise. We will also think of such matrices as functions M : X × X → G ∪ {0}, 
where M(x, y) is just the (x, y)-entry of the matrix. It is routine to verify that the group 
G ≀X H is isomorphic to the group consisting of the corresponding matrices, as just 
defined, where 0 + g = g + 0 = g for all g ∈ G.

We extend this definition of wreath products to inverse semigroups S and subsemi
groups T of the symmetric inverse monoid IX as follows. To do this nicely, we introduce 
a semiring which contains S but only use the S ∪ {0} part of it.
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Recall that (R,+, ·) is a semiring if the following hold:

(1) (R,+) is a commutative monoid whose identity we call 0;
(2) (R, ·) is a semigroup;
(3) the operation · distributes over +; and
(4) r · 0 = 0 · r = 0 for all r ∈ R.

If S is a semigroup, then we define N[S] to be the quotient of the free semiring over 
the set S by the relations s · t = st s, t ∈ S. That is, N[S] consists of finite formal sums 
of the form

∑︂
s∈S

nss

where ns ∈ N for all s ∈ S and only finitely many ns are non-zero with the natural 
multiplication.

If R is a semiring and X is a set, then we define the (row finite) matrix semiring over 
R by

MX(R) = {f : X ×X → R | all but finitely many entries of each row of f are 0}
= {f : X ×X → R | for all x ∈ X, |(R \ {0})f−1 ∩ ({x} ×X)| < ∞}

with operation defined by

(x, y)fg =
∑︂
i∈X

(x, i)f · (i, y)g

for f, g ∈ MX(R).
If S is a semigroup, PX is the partial transformation monoid on the set X, and 

T ≤ PX , then we define S ≀ T to be the following submonoid of MX(N[S]):

S ≀ T = {f ∈ MX(N[S]) | im(f) ⊆ S ∪ {0} and (S)f−1 ∈ T}.

The condition (S)f−1 ∈ T makes sense since (S)f−1 ⊆ X × X, and so this condition 
simply asserts that the relation (S)f−1 is a partial transformation that belongs to T .

We define ϕ : S ≀T → T by (f)ϕ = (S)f−1. It is routine to verify that ϕ is a surjective 
homomorphism. As such the multiplication in S ≀T can alternatively be defined as follows

(x, y)fg =
{︄

(x, z)f · (z, y)g if (x, z) ∈ (f)ϕ, (z, y) ∈ (g)ϕ
0 if (x, y) / ∈ (fg)ϕ,

(since the sum only ever has one non-zero summand).



302 L. Elliott et al. / Journal of Algebra 687 (2026) 292--344 

Lemma 4.1. If S and T ≤ IX ≤ PX are inverse semigroups, then S ≀ T is an inverse 
semigroup.

Proof. If f ∈ S ≀ T , then it is routine to verify that f is an idempotent if and only if

(1) the preimage of S under f is an idempotent of T ;
(2) the image of f contains only idempotents.

Since S and T are inverse semigroups, f ∈ S ≀ T is a diagonal matrix and so the idem
potents of S ≀ T commute. Also if f ∈ S ≀ T , then we define f−1 to be

(a, b)f−1 =
{︄

((b, a)f)−1 if (b, a)f ̸= 0
0 if (b, a)f = 0

.

In other words, f−1 is obtained from f by transposing f and inverting its entries. It is 
straightforward to show that f−1 is a semigroup theoretic inverse of f , and so S ≀ T is 
an inverse semigroup. □

The following proposition is a special case of Theorem 4.3, however we include the 
proof below, as it is more straightforward, and helps exhibit the ideas behind the proof 
of Theorem 4.3.

Proposition 4.2. Let G be a non-trivial group and T ≤ IX be an inverse semigroup. Then 
G ≀ T is E-disjunctive.

Proof. Seeking a contradiction suppose that ρ is a non-trivial idempotent-pure congru
ence on G ≀ T . Then by Lemma 2.7 there exist f ̸= g ∈ E(G ≀ T ) such that (f, g) ∈ ρ. If 
fg = f , then f < g. If fg ̸= f , then f < fg are idempotents such that (f, fg) ∈ ρ. Thus 
we may assume without loss of generality that f < g. Note that f, g are both matrices 
whose entries are all 0 except for some idempotents on the diagonal. Since f < g, there 
exists x ∈ X such that (x, x)f < (x, x)g. The entries of f and g belong to G∪{0} (whose 
only idempotents are the identity 1G and 0). Thus (x, x)g = 1G and (x, x)f = 0. Let 
h ∈ G \ {1G} and let g′ ∈ S ≀ T be the matrix with the same entries as g except that 
(x, x)g′ = h. Thus g′g = g′ and g′f = f . It follows that

(f, g) ∈ ρ ⇒ (g′f, g′g) ∈ ρ ⇒ (f, g′) ∈ ρ.

But g′ is not an idempotent, and ρ is idempotent-pure. This is a contradiction. □
The next theorem establishes that every inverse semigroup is a quotient of some E

disjunctive semigroup.
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Theorem 4.3. Let S be an E-disjunctive inverse semigroup without a zero and T ≤ IX
be a inverse semigroup. Then S ≀ T is E-disjunctive and has T as a quotient.

Moreover, if T ≤ SX , then the assumption that S has no zero can be dropped.

Proof. If T is empty, then S ≀ T is empty, and so S ≀ T is E-disjunctive, as required. We 
therefore assume that T is non-empty.

Let D be equal to the set of diagonal matrices of S ≀ T . Then D is a full inverse 
subsemigroup of S ≀ T , i.e. D contains all of the idempotents of S ≀ T . By Lemma 2.9, it 
suffices to show that D is E-disjunctive.

Let ρ be an idempotent-pure congruence on D. We show that ρ is trivial. It suffices 
by Lemma 2.7 to show that ρ is trivial on the idempotents. Suppose that (f, g) ∈ ρ and 
f, g are idempotents. Let h = fg ≤ f . We show that f = h, then by symmetry we will 
have g = h and hence f = g as required.

Let x ∈ X be arbitrary. We need only show that (x, x)f = (x, x)h (as they are 
idempotents they agree on their non-diagonal entries). There are two cases to consider.

Case 1. (x, x)f ≥ (x, x)h = 0. We define

I =
{︂
s ∈ S 

⃓⃓⃓
the matrix obtained from f by replacing (x, x)f with s belongs to h/ρ

}︂
.

For all s ∈ S ∪ {0}, let fs be the matrix obtained from f by replacing (x, x)f with s. It 
follows that

fS :=
{︂
fs

⃓⃓⃓
s ∈ S ∪ {0}

}︂
is a semigroup isomorphic to S ∪{0}. The restriction of h/ρ to fS is I. The natural map 
from S to fS embeds I into a congruence class of fS containing the zero element of fS. 
Thus I is an ideal of S containing (x, x)f . Since ρ is idempotent-pure, it follows that I
consists of idempotents. Since S is E-disjunctive, it follows that I must therefore be a 
singleton (otherwise S/I would be a proper idempotent-pure quotient). Hence, since I
is a singleton ideal, the unique element of I is a zero for S, a contradiction. So in fact 
Case 1 never occurs.

Showing that Case 1 does not occur is the only point in the proof requiring that S has 
no zero element. When T ≤ SX , this case does not occur because the only idempotent 
of T is the identity function on X, so h has no zeros on the diagonal. Hence why the 
assumption is no longer needed.

Case 2. (x, x)f ≥ (x, x)h > 0. For all s ∈ S let hs ∈ D be the element which agrees 
with h on all entries except (x, x)hs = s. Then Sx :=

{︂
hs

⃓⃓⃓
s ∈ S

}︂
is a subsemigroup 

of D isomorphic to S. Hence, since ρ is idempotent-pure, the restriction of ρ to Sx is 
trivial. In particular, to show that (x, x)h = (x, x)f , we need only show that (h, h(x,x)f =
(h(x,x)h, h(x,x)f ) ∈ ρ.
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We denote h(x,x)f by f ′. Since h ≤ f , f ′f = f ′ and f ′h = h. It follows that

(f, g) ∈ ρ ⇒ (ff, fg) ∈ ρ

⇒ (f, h) ∈ ρ

⇒ (f ′f, f ′h) ∈ ρ

⇒ (f ′, h) ∈ ρ

as required. □
Corollary 4.4. Every inverse semigroup is a quotient of an E-disjunctive inverse semi
group.

Part 2. Some classes of 𝑬-disjunctive inverse semigroups

In this part of the paper we provide a number of examples of E-disjunctive inverse 
semigroups (Section 5), and we characterise E-disjunctive inverse semigroups belonging 
to the classes of: graph inverse semigroups (Section 6) (in terms of the underlying graphs); 
and monogenic inverse semigroups (Section 7). As mentioned above, the Clifford E
disjunctive semigroup were characterised in [1, Theorem 6].

5. A compendium of examples

In this section we give various examples of E-disjunctive inverse semigroups. These 
serve as counterexamples to various natural questions about E-disjunctive inverse semi
groups.

By the Vagner-Preston Theorem [14, Theorem 5.1.7], every inverse semigroup is iso
morphic to an inverse subsemigroup of some symmetric inverse monoid.

Example 5.1. The symmetric inverse monoid IX on a set X is E-disjunctive if and only 
if |X| ̸= 1.

Proof. If |X| = 0, then IX is the trivial semigroup, and hence is E-disjunctive.
If |X| = 1, then IX is a semilattice of size 2, and as such is not E-disjunctive since it 

is non-trivial and E-unitary, and hence the minimum group congruence is a non-trivial 
idempotent-pure congruence.

Suppose that |X| ≥ 2. Let s, t ∈ IX and suppose that (s, t) belongs to the syntactic 
congruence on IX . Then αsβ ∈ E(IX) if and only if αtβ ∈ E(IX) for all α, β ∈ IX . 
If s ∈ IX , then we consider s as the subset of X × X consisting of the pairs (x, (x)s). 
Let x, y ∈ X, and let z ∈ X \ {x}. Then {(x, x)} ◦ s ◦ {(y, z)} / ∈ E(IX) if and only 
if (x, y) ∈ s; and similarly for t. Since {(x, x)} ◦ s ◦ {(y, z)} ∈ E(IX) if and only if 
{(x, x)} ◦ t ◦ {(y, z)} ∈ E(IX), and so (x, y) ∈ s if and only if (x, y) ∈ t. Thus s = t, and 
so the syntactic congruence on IX is equality. □
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A congruence ρ is idempotent-separating if ρ never relates two distinct idempo
tents. Thus idempotent-separating is a dual property to idempotent-pure and inverse 
semigroups with no non-trivial idempotent-separating congruences, called fundamental 
inverse semigroups are a dual class of inverse semigroups to E-disjunctive inverse semi
groups. It is not difficult to show that the symmetric inverse monoid is fundamental, 
thus providing a non-congruence free example of a semigroup in both of these classes.

Recall, from [9], for example, that the dual symmetric inverse monoid I∗X is defined 
as follows. The underlying set of I∗X is the set of partitions of X × {0, 1} such that each 
part intersects both X ×{0} and X ×{1}. In other words, elements of I∗X correspond to 
bijections between the parts of a partition of X×{0} and a partition of X×{1}. We will 
use partitions and the corresponding equivalence relations interchangeably. Given s, t ∈
I∗X , we define Diag(s, t) to be the least equivalence relation on X × {0, 1, 2} containing

{((x, a), (y, b)) ∈ (X × {0, 1, 2})2 : ((x, a), (y, b)) ∈ s or ((x, a− 1), (y, b− 1)) ∈ t}.

The product of s and t is defined to be

{((x, a), (y, b)) ∈ (X × {0, 1})2 : ((x, 2a), (y, 2b)) ∈ Diag(s, t)}

and is denoted st. Note that e ∈ I∗X is an idempotent whenever ((x, 0), (y, 0)) ∈ e if and 
only if ((x, 1), (y, 1)) ∈ e for all x, y ∈ X (i.e. the partitions of X × {0} and X × {1} are 
the ``same'' and the corresponding function is the identity).

Example 5.2. The dual symmetric inverse monoid I∗X , where X is any set, is E
disjunctive.

Proof. If I∗X has at most one idempotent, then I∗X is either a group or the empty semi
group. In either case, I∗X is E-disjunctive. By Lemma 2.7, it suffices to show that every 
idempotent-pure congruence is trivial on E(S). Let ρ be an idempotent-pure congruence 
on I∗X . Suppose for contradiction that there exist distinct idempotents e, f ∈ E(I∗X) such 
that (e, f) ∈ ρ. Since e ̸= f , at most one of e and f equals ef ; assume without loss of 
generality that e ̸= ef . Then there is a part of ef which is a union of at least two parts 
of e. Let s ∈ I∗X be an element which swaps two of these parts of e and fixes the others. 
If (e, f) ∈ ρ, then (e, ef) = (e2, ef) ∈ ρ and so (se, sef) ∈ ρ. But se = s, as e acts as 
the identity function on the image of s, which is not an idempotent. On the other hand, 
sef = ef ∈ E(I∗X), and so (s, ef) ∈ ρ. Since ef is an idempotent and s is not, this 
contradicts ρ being idempotent-pure, and so I∗X is E-disjunctive. □

The next example shows that ``congruence'' cannot be replaced by ``right congruence'' 
in the definition of E-disjunctive inverse semigroups. In fact, the next example is the 
unique inverse semigroup of smallest size up to isomorphism, showing this.
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xx−1 x−1 y−1

x x−1x y−1x

y x−1y y−1y

x2, x3

Fig. 1. Egg-box diagram of an E-disjunctive inverse semigroup with a non-trivial idempotent-pure right 
congruence.

Example 5.3. Let S be the inverse semigroup defined by the inverse semigroup presen
tation:

⟨x, y | xy = xy−1 = yx = yx−1 = y−1x−1 = x2, yy−1 = xx−1⟩.

It can be shown, for example, using GAP [10,31], that:

S = {x, y, x−1, y−1, x2, xx−1, x−1x, x−1y, y−1x, y−1y, x3},

that S is E-disjunctive, the least right congruence ρ on S containing the pair (x3, x) has 
non-trivial classes:

{x, y, x3}, {x2, xx−1},

and that the idempotents of S are:

x−1x, y−1y, xx−1, x2.

Hence ρ is idempotent-pure, using the obvious definition of this notion for right congru
ences. It is also possible to show using [22,23], based on [24], that there is no smaller 
E-disjunctive inverse semigroup admitting such a right congruence, that S is the unique 
inverse semigroup (up to isomorphism) of size 11 admitting such a right congruence, and 
even that ρ is the only such right congruence on S. See Fig. 1 for the egg-box diagram 
of this semigroup.

For our next example, we require the definition of Thompson’s group V , which we 
define below. For a more comprehensive introduction to Thompson’s group V , we refer 
the reader to [6].

Definition 5.4 (Thompson’s group V ). Let ℭ denote the Cantor space, with underlying set 
{0, 1}ω (that is, infinite sequences of 0s and 1s), and using the product topology induced 
from the discrete topology of {0, 1}. We denote the free monoid on {0, 1} by {0, 1}∗ (i.e. 
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the monoid of finite sequences of 0s and 1s with concatenation as the operation). If 
w ∈ {0, 1}∗, then we define

wℭ =
{︂
x ∈ ℭ 

⃓⃓⃓
w is a prefix of x

}︂
.

Note that these sets are clopen, and the collection of all such sets is a basis for ℭ.
Let F1 and F2 be finite subsets of {0, 1}∗ such that |F1| = |F2|, and

{︂
wℭ 

⃓⃓⃓
w ∈ F1

}︂
and 

{︂
wℭ 

⃓⃓⃓
w ∈ F2

}︂
are partitions of ℭ. We call such subsets of {0, 1}∗ complete antichains. If u ∈ ℭ, then 
since F1 partitions ℭ there exists wu ∈ F1 that is a prefix of u. In this case, we write 
u = wuvu where vu ∈ ℭ is just the suffix of u following wu. The prefix exchange map 
f : ℭ → ℭ between F1 and F2 induced by a bijection ϕ : F1 → F2 is defined by

(u)f = (wuϕ)vu.

Every such prefix exchange map is a homeomorphism of ℭ. The group of all prefix 
exchange maps between any pair of complete antichains is called Thompson’s group V .

The following example is a slight modification of the Thompson inverse monoid Inv2,1
introduced in [4] (we modify it as that monoid does not have infinitely many J -classes).

Theorem 5.5. There exists a finitely generated E-disjunctive inverse monoid with in
finitely many J -classes.

Proof. We give an example of a Thompson’s group-like inverse monoid that is finitely 
generated and has infinitely many J -classes.

Let M be the inverse submonoid of the inverse monoid of partial permutations on ℭ
generated by Thompson’s group V and the identity functions on 1ℭ and {1n0ω : n ∈
N ∪ {0}}. We denote the second of these identity functions by e. As Thompson’s group 
V is 2-generated (see for example [5]), M is 4-generated.

We next show that M has infinitely many J -classes. We do so by showing that M
contains the identity function on a set of size n for all n ∈ N ∪{0}. For different n, these 
elements are not J -related in Iℭ and hence M has infinitely many J -classes. It suffices 
to show that every identity fn on the set

{1i0ω : i < n}

belongs to M . We denote the identity function on the set 
⋃︁

i<n 1i0ℭ by gn. It is straight
forward to verify that fn = gne, and so it suffices to show that gn ∈ M . Note that

1ℭ = 1nℭ ∪
⋃︂

1≤i<n

1i0ℭ
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for any n ≥ 1. If F is any complete antichain in {0, 1}∗ containing 0 and 1n, and 
ϕ : F → F is the bijection swapping 0 and 1n. Then the corresponding prefix exchange 
map ψ ∈ V maps 1ℭ to dom(gn). Hence the conjugate of the identity function on 1ℭ by 
ψ is fn. In particular, since the identity on 1ℭ is a generator of M , fn belongs to M .

We now show that M is E-disjunctive. If m ∈ M is arbitrary and the domain of m
is uncountable, then m is a product of elements of V and the second generator. Since 
the domain of the second generator is clopen and the elements of V are prefix exchange 
maps, it follows that the image of m is clopen. Hence every element m of M has a domain 
which is either clopen or countable.

If J is the J -class of f1, then J = V f1V and so J consists of functions with domain 
of size 1 which map an element with an infinite tail of zeros to another such element.

Claim 5.6. If a, b ∈ M \ {∅} are distinct, there is an idempotent e ∈ J such that ea, eb ∈
J ∪ {∅} and ea ̸= eb.

Proof. Suppose that a and b have the same domain. If dom(a) = dom(b) is countable, 
then there is an element a′ ∈ J with a′ less than a in the usual partial order of inverse 
semigroups. Since a ̸= b, there exists u ∈ ℭ such that (u)a ̸= (u)b. In particular, we may 
choose e ∈ J such that e is the identity on u. In this case, (u)ea = (u)a ̸= (u)b = (u)eb
and ea, eb ∈ J .

If dom(a) = dom(b) is clopen, then the set 
{︂
x ∈ dom(a) 

⃓⃓⃓
(x)a ̸= (x)b

}︂
is open and 

non-empty. Thus it contains a set wℭ for some w ∈ {0, 1}∗. By prefix replacement via 
Thompson’s group V (using the prefix w) we can find m′ ∈ J such that im(m′) ⊆ wℭ. 
Hence m′−1

m′a,m′−1
m′b ∈ J are distinct and m′−1

m′ is the required idempotent in 
this case.

If dom(a) ̸= dom(b), then suppose without loss of generality that there is some u ∈
dom(a) \ dom(b) such that u ends with an infinite tail of zeros. If we set e to be the 
identity function on {u}, then e ∈ J since J comprises all functions with a domain of 
size 1 which map an element with an infinite tail of zeros to another such element. □

As J contains both idempotents and non-idempotents, it suffices to show that every 
non-trivial congruence on M identifies the J -class J with the J -class of f0 = ∅.

Let ρ be a non-trivial congruence on M . Let a, b ∈ M be such that a ̸= b and (a, b) ∈ ρ. 
By the claim above, there is e ∈ J such that ea, eb ∈ J and ea ̸= eb. Thus ea(ea)−1 and 
eb(ea)−1 are related by ρ. But one of these is zero and the other is not, so all elements 
of J are related to zero by ρ and we are done. □

The arithmetic inverse monoid 𝒜, from [13], is the inverse submonoid of the symmetric 
inverse monoid I(Z≥0) generated by the set {Ra,b | a, b ∈ Z≥0, a > b}, where Ra,b ∈
I(Z≥0) is defined by
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(n)Ra,b =
{︄

n−b
a n ≡ b mod a

undefined otherwise.

By [13, Theorem 12], every non-zero element of 𝒜 may be written uniquely in the form 
Ra,bR

−1
c,d, where c > d and a > b (note (n)R−1

c,d = nc + d). Since idempotents of I(Z≥0)
are partial identities, it follows that the idempotents of 𝒜 are just Ra,bR

−1
a,b or ∅ (where 

∅ is the empty map), for all a > b or the empty map ∅. By [13, Theorem 24], if 
(Ra,bR

−1
c,d), (Re,fR

−1
g,h) ∈ 𝒜 \ {∅}, then

(Ra,bR
−1
c,d) · (Re,fR

−1
g,h)

=
{︄

R ae 
gcd(c,e) ,

a(r−d)
c +b

R−1
gc 

gcd(c,e) ,
g(r−f)

e +h
if gcd(c, e) divides (d− f)

∅ otherwise,
(1)

where r is minimal such that r ≡ d mod c and r ≡ f mod e.

Theorem 5.7. The arithmetic inverse monoid 𝒜 is E-disjunctive.

Proof. We will show that 𝒜 is E-disjunctive by showing that the syntactic congruence 
is trivial. Recall that the right syntactic congruence of a semigroup S is {(s, t) ∈ S |
sx ∈ E(S) ⇐⇒ tx ∈ E(S) for all x ∈ S}. The right syntactic congruence is the 
maximum idempotent-pure right congruence on S. Since the syntactic congruence is 
idempotent-pure and a right congruence, the syntactic congruence is contained in the 
right syntactic congruence. Since the syntactic congruence ρ is idempotent-pure, the 
kernel of ρ is E(𝒜), and so ρ is trivial if and only if ρ has a trivial trace. Hence it 
suffices, since the trace of ρ is contained in the trace of the right syntactic congruence, to 
show that the trace of the syntactic right congruence is trivial. By definition, the right 
syntactic congruence has a trivial trace if and only if each idempotent e of 𝒜 defines a 
unique set Ye = {s ∈ 𝒜 | es ∈ E(𝒜)}.

Let Ra,bR
−1
a,b ∈ E(𝒜)\{∅}. We will describe the set YRa,bR

−1
a,b

. Suppose that Re,fR
−1
g,h ∈

𝒜 \ {∅} is such that (Ra,bR
−1
a,b) · (Re,fR

−1
g,h) ∈ E(𝒜). Then (Ra,bR

−1
a,b) · (Re,fR

−1
g,h) = ∅

or = Rx,yR
−1
x,y for some x and y. Hence by (1) precisely one of the following holds:

(1) ae = ga and r = g(r−f)
e + h, where r is minimal such that r ≡ b mod a and r ≡ f

mod e;
(2) gcd(a, e) does not divide b− f .

If (1) holds, then ae = ga implies e = g, and so

r = g(r − f)
e 

+ h = r − f + h.

Hence f = h. So Re,fR
−1
g,h = Re,fR

−1
e,f ∈ E(𝒜). If (2) holds, then immediately from (1)

the product (Ra,bR
−1
a,b) · (Re,fR

−1
g,h) = ∅. Let
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Xa,b = {(e, f) ∈ Z≥0 × Z≥0 | e > f and gcd(a, e) does not divide b− f}.

Suppose Ra′,b′R
−1
a′,b′ ∈ E(𝒜) is such that Xa′,b′ = Xa,b. Then for all e > f ∈ Z≥0, we 

have that gcd(a, e) divides b − f if and only if gcd(a′, e) divides b′ − f . We will show 
that a = a′ and b = b′.

Let p be a prime greater than a and a′ (and thus coprime to both). Then gcd(a, pa′)
divides 0 = b− b, and so a′ = gcd(a′, pa′) divides b′ − b. By symmetry, a divides b′ − b. 
If f < pa′, then gcd(a, a′) = gcd(a, pa′) divides b− (b′ + f) if and only if gcd(a′, pa′)
divides f . Since b−b′ is a multiple of a′, and hence a multiple of gcd(a, a′) also, gcd(a, a′)
divides b − (b′ + f) if and only if gcd(a, a′) divides f . Thus for all f < pa′, gcd(a, a′)
divides f if and only if a′ = gcd(a′, a′) divides f . In particular, gcd(a, a′) divides a, and 
so a′ divides a. By symmetry, a divides a′, and since a, a′ ∈ Z>0, it follows that a = a′. 
It remains to show that b = b′. We have already shown that a divides b′− b. Since b′ < a

and b < a, |b′ − b| < a and so |b′ − b| = 0, as required.
It follows that if Ra,bR

−1
a,b ∈ E(𝒜) \ {∅}, then

YRa,bR
−1
a,b

\ E(𝒜) = {Re,fR
−1
g,h | (e, f) ∈ Xa,b} \ E(𝒜).

If a′ ̸= a or b′ ̸= b, then Xa,b ̸= Xa′,b′ and so YRa,bR
−1
a,b

̸= YRa′,b′R
−1
a′,b′

, as required. 
Finally, Ra,b ∈ Y∅, but Ra,b / ∈ YRa,bR

−1
a,b

, Y∅ ̸= YRa,bR
−1
a,b

for any non-zero idempotent 
Ra,bR

−1
a,b. □

6. Graph inverse semigroups

In this section we give a full characterisation of when an arbitrary graph inverse 
semigroup is E-disjunctive.

For this purpose, we define a graph Γ = (Γ0,Γ1, s, r) to be a quadruple consisting 
of two sets, Γ0 and Γ1, and two functions s, r : Γ1 → Γ0, called the source and range, 
respectively. The elements of Γ0 and Γ1 are called vertices and edges, respectively. A 
sequence p = e1e2 · · · ek of (not necessarily distinct) edges ei ∈ Γ1, such that (ei)r =
(ei+1)s for 1 ≤ i ≤ k − 1, is a path from (e1)s to (ek)r. We define (p)s = (e1)s and 
(p)r = (ek)r, and refer to k as the length of p. The elements of Γ0 are paths of length 0, 
and we denote by Path(Γ) the set of all paths in Γ.

Define the graph inverse semigroup S(Γ) of a graph Γ to be the inverse semigroup 
with zero 0 ̸∈ Γ0 ∪ Γ1, generated by Γ0 and Γ1, together with a set of elements Γ−1 =
{e−1 | e ∈ Γ1}, that satisfies the following four axioms, for all u, v ∈ Γ0 and e, f ∈ Γ1:

(V): vv = v and vu = 0 if v ̸= u,
(E1): (e)s e = e (e)r = e,
(E2): (e)r e−1 = e−1 (e)s = e−1,
(CK1): f−1f = (f)r and e−1f = 0 if e ̸= f .
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(Note that ``V'' is for ``vertex'', ``E'' is for ``edges'', and ``CK'' is for ``Cuntz-Kreiger'' 
given the origins of the study of graph inverse semigroups in the study of Cuntz-Kreiger 
algebras and the similarity of CK1 to the Cuntz-Kreiger relations.)

For every v ∈ Γ0 we define v−1 = v, and for every q = e1 · · · ek ∈ Path(Γ) we define 
q−1 = e−1

k · · · e−1
1 . It follows directly, by repeated application of (CK1), that every non

zero element in S(Γ) can be written in the form pq−1 for some p, q ∈ Path(Γ). It is 
routine to show that S(Γ) is an inverse semigroup, with (pq−1)−1 = qp−1 for every 
non-zero pq−1 ∈ S(Γ).

The congruences of a graph inverse semigroup were characterised in [39].
A Wang triple (H,W, f) on Γ consists of a set H ⊆ Γ0 such that H is closed under 

reachability in Γ (i.e. if u ∈ H and there is a path from u to v ∈ Γ0, then v ∈ H also), 
a set W ⊆ {v ∈ Γ0 \H | |(v)s−1

Γ\H | = 1}, and a cycle function f : C(Γ0) → Z+ ∪ {∞}
(where C(A) is the set of cycles consisting of vertices in the set A ⊆ Γ0) such that 
(c)f = 1 for all c ∈ C(H), (c)f = ∞ for all c / ∈ C(H ∪ W ), and the restriction of f
to C(W ) is invariant under cyclic permutations. In [39], the term ``congruence triple'' is 
used for this concept.

Given a Wang triple (H,W, f) on a graph Γ, we define the corresponding congruence 
to be the least congruence on S(Γ) containing the following set:

(H × {0}) ∪ {(w, ee−1) | w ∈ W, (e)s = w, (e)r ̸∈ H}
∪{(c(c)f , (c)s) | c ∈ C(W ), (c)f ∈ Z+}. (2)

Henceforth we identify the Wang triples and the congruences they represent.
An isolated vertex in a graph Γ is a vertex v ∈ Γ0 such that v ̸= (e)s and v ̸= (e)r for 

all e ∈ Γ1. An out-edge of a vertex v ∈ Γ0 is an edge e ∈ Γ1 such that (e)s = v.

Theorem 6.1. A Wang triple (H,W, f) of a graph inverse semigroup S(Γ) is an 
idempotent-pure congruence if and only if H is a set of isolated vertices and (c)f = ∞
for all c ∈ C(W ).

Proof. (⇒): We prove the contrapositive. If H contains a vertex v that is not isolated, 
then there is e ∈ Γ1 such that (e)r = v or (e)s = v. Thus (e, 0) ∈ (H,W, f). But e is not 
an idempotent, and 0 is idempotent, and so (H,W, f) is not idempotent-pure.

If (c)f = x ∈ Z+ for some c ∈ C(W ), then (cx, (c)s) ∈ (H,W, f). Since cx is not an 
idempotent and (c)s is an idempotent, (H,W, f) is not idempotent-pure.

(⇐): We define A = ({0} ∪H)2 and we define B to consist of the pairs

((xp1)(yp1)−1, (xp2)(yp2)−1) ∈ S(Γ)

such that x, y, p1, p2 ∈ Path(Γ), (x)r = (p1)s = (p2)s = (y)r; (e)s ∈ W , for all e in p1
or p2. Let ρ = A ∪ B ∪ {(x, x) : x ∈ S(Γ)}. Note that ρ never relates an idempotent to 
a non-idempotent. It is thus sufficient to show that ρ = (H,W, f). If (x, y) ∈ A, then x
and y both belong to H ∪ {0}, and so (x, y) ∈ (H,W, f) also.
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If ((xp1)(yp1)−1, (xp2)(yp2)−1) ∈ B, where p1 = e1 · · · en for some e1, . . . , en ∈ Γ1, 
then

(xp1(yp1)−1, xy−1) = (xp1p
−1
1 y−1, xy−1) = (xe1 · · · ene−1

n · · · e−1
1 y−1, xy−1).

Since (s(ei), eie−1
i ) ∈ (H,W, f), it follows that for every i

(xe1 · · · eie−1
i · · · e−1

1 y−1, xe1 · · · ei−1(ei)se−1
i−1 · · · e−1

1 y−1)

= (xe1 · · · eie−1
i · · · e−1

1 y−1, xe1 · · · ei−1e
−1
i−1 · · · e−1

1 y−1) ∈ (H,W, f). 

Hence, by transitivity,

(xe1 · · · ene−1
n · · · e−1

1 y−1, xy−1) ∈ (H,W, f).

So (xp1(yp1)−1, xy−1) ∈ (H,W, f) and hence by symmetry (xp2(yp2)−1, xy−1) ∈
(H,W, f). It follows that ρ ⊆ (H,W, f).

For the converse, it suffices to show that ρ is a congruence, and that ρ contains the 
pairs in (2).

To show that ρ is transitive, we will check individually if A◦B, A◦A and B ◦B are all 
contained in ρ. For A ◦A, if (x, y), (y, z) ∈ A, then x, z ∈ H ∪ {0} and so (x, z) ∈ A. For 
A◦B, if (z, xp1(yp1)−1) ∈ A and (xp1(yp1)−1, xp2(yp2)−1) ∈ B. As it lies in a pair in A, 
xp1(yp1)−1 is a vertex in H or 0. As 0 can never occur in a pair in B, we can assume that 
xp1(yp1)−1 is a vertex in H. However, as the first entry in a pair in B, xp1(yp1)−1 either 
contains a vertex in W , or p1 is the empty path. The first case cannot happen as there 
is no path from Γ \H to H, and W ∩H = ∅. In the second case, xp1(yp1)−1 = xy−1, 
which lies in A. Thus xy−1 is a vertex in H, and so x = y ∈ H. As p2 is either empty or 
a path starting in H which intersects a vertex in W , which never happens, we have that 
p2 is empty. Therefore (z, xp2(yp2)−1) = (z, xy−1) = (z, xp1(yp1)−1) ∈ A.

For B ◦ B, suppose q = (xp1(yp1)−1, xp2(yp2)−1) ∈ B and r = (wp3(zp3)−1, 
wp4(zp4)−1) ∈ B, where xp2(yp2)−1 = wp3(zp3)−1. Either x is a prefix of w or w is 
a prefix of x; without loss of generality suppose w is a prefix of x. So x = wu, for some 
path u. It follows that p3 = up2. So xp1 = wup1 and q = (wup1(yp1)−1, wup2(yp2)−1). 
Additionally, as p3 = up2, r = (wup2(zup2)−1, wp4(zp4)−1). We also have that y = zu, 
as wup2(yp2)−1 = wup2(zup2)−1. Thus q = (wup1(zup1)−1, wup2(zup2)−1) and r =
(wp3(zp3)−1, wp4(zp4)−1). It follows that

(wup1(zup1)−1, wp4(zp4)−1) ∈ B,

as required.
We now show that ρ is a congruence. If (x, y) ∈ ρ, then (x−1, y−1) ∈ ρ, and so it suf

fices to show that ρ is a right congruence. If (x, y) ∈ A and s ∈ Γ0 ∪ Γ1 ∪ (Γ1)−1, 
then as H consists of isolated vertices, xs, ys ∈ H ∪ {0}, and so (xs, ys) ∈ A. If 
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(xp1(yp1)−1, xp2(yp2)−1) ∈ B and s ∈ Γ0∪Γ1∪(Γ1)−1, then at least one of the following 
cases applies:

(1) s ∈ Γ0 and s = (y)s. In this case, (xp1(yp1)−1s, xp2(yp2)−1s) = (xp1(yp1)−1, 
xp2(yp2)−1) ∈ B.

(2) s ∈ Γ0 and s ̸= (y)s. In this case ((xp1(yp1)−1s, xp2(yp2)−1s) = (0, 0) ∈ A.
(3) s ∈ Γ1 and (s)s ̸= (y)s. Again, ((xp1(yp1)−1s, xp2(yp2)−1s) = (0, 0) ∈ A.
(4) s ∈ Γ1 and s is the first edge in y. Then y = sy′, for some path y′ in Γ, and so 

((xp1(yp1)−1s, xp2(yp2)−1s) = ((xp1(y′p1)−1, xp2(y′p2)−1) ∈ B.
(5) s ∈ Γ1, y / ∈ Γ0, and (s)s = (y)s, s is not the first edge in y. Again,

((xp1(yp1)−1s, xp2(yp2)−1s) = (0, 0) ∈ A.

(6) s ∈ Γ1, y ∈ Γ0\W and (s)s = (y)s. From the definition of B, the source of each edge 
in p1 lies in W , and (p1)s = (y)r = y / ∈ W . In particular, p1 contains no edges, i.e. 
p1 ∈ Γ0. Similarly, p2 ∈ Γ0. Thus p1 = p2 = y. So ((xp1(yp1)−1s, xp2(yp2)−1s) =
((xy(y)−1s, xy(y)−1s) = (xs, xs) ∈ ρ.

(7) s ∈ Γ1, y ∈ W , (s)s = y, and p1, p2 / ∈ Γ0. Then by the choice of W , s is the unique 
edge with source y, and so p1 = sp′1 and p2 = sp′2 for some paths p′1, p′2. Hence

(xp1(yp1)−1s, xp2(yp2)−1s) = (xsp′1p′ −1
1 , xsp′2p

′ −1
2 ) ∈ B.

(8) s ∈ Γ1, y ∈ W , (s)s = y, and p1, p2 ∈ Γ0. As s(p1) = s(p2) = r(y) = y, we have 
p1 = y = p2, and so (xp1(yp1)−1, xp2(yp2)−1) = (xp1(yp1)−1, xp1(yp1)−1) ∈ ρ.

(9) s ∈ Γ1 and y ∈ W , (s)s = y and precisely one of p1 and p2 lies in Γ0. Assume 
without loss of generality, that p1 ∈ Γ0. Then as W is part of a Wang triple, every 
vertex in W has a unique out-edge, and so s is the unique edge with source y, and 
so p2 = sp′2 for some path p′2. Hence

(xp1(yp1)−1s, xp2(yp2)−1s) = (xs, xsp′2p′ −1
2 ) ∈ B.

(10) s−1 ∈ Γ1 and (s)s = (y)s. Then let z = s−1y. Note (z)r = (y)r. In addition,

((xp1(yp1)−1s, xp2(yp2)−1s) = ((xp1(s−1yp1)−1, xp2(s−1yp2)−1)

= ((xp1(zp1)−1, xp2(zp2)−1) ∈ B.

(11) s−1 ∈ Γ1 and (s)s ̸= (y)s. Again, ((xp1(yp1)−1s, xp2(yp2)−1s) = (0, 0) ∈ A.

Hence ρ is a congruence, as required. □
Next, we state and prove the main theorem of this section.
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Theorem 6.2. A graph inverse semigroup defined using a graph Γ is E-disjunctive if 
and only if Γ has no isolated vertices, and every vertex in Γ has either 0 or at least 2
out-edges.

Proof. By Theorem 6.1, S(Γ) admits a non-trivial idempotent-pure congruence if and 
only if it has a (potentially empty) set H of isolated vertices and a set W ⊆ {v ∈ Γ0 \H |
|(v)s−1

Γ\H | = 1} such that there is a cycle function f on Γ such that (c)f = ∞ for all 
c ∈ C(W ).

(⇒): Suppose that Γ has isolated vertices or there exists a vertex v ∈ Γ0 with 
|(v)s−1| = 1. In the former case, taking H to be the non-empty set of isolated ver
tices, and W = ∅ gives a non-trivial idempotent-pure congruence. In the latter case, 
H = ∅ and W = {v ∈ Γ0 : |(v)s−1| = 1} ̸= ∅ gives a non-trivial idempotent-pure 
congruence. Thus S(Γ) is not E-disjunctive.

(⇐): Suppose that Γ has no isolated vertices and that every vertex has either 0 or 
2 out-edges. For Γ to admit a non-trivial idempotent-pure congruence, we would have 
H = ∅ and W = ∅, as these are the only possibilities for H and W . However, the 
congruence defined by this pair is equality, and so S(Γ) is E-disjunctive. □
7. Finite monogenic inverse monoids

In this section we characterise those finite monogenic inverse monoids that are E
disjunctive. Although we concentrate on monoids rather than semigroups in this section, 
analogues of the main results hold for monogenic inverse semigroups, and these can be 
concluded from the results in this section together with Corollary 3.3. In order to do 
this, we require the following characterisation of finite monogenic inverse monoids, and 
some related results, mostly arising from [37].

If i1, . . . , im ∈ {1, . . . , n}, then we denote by [i1, . . . , im] the element of the symmetric 
inverse monoid In with domain {i1, . . . , im−1}, image {i2, . . . , im}, and that maps ij to 
ij+1 for all j ∈ {1, . . . ,m− 1} (and thus with the image of im not defined).

Lemma 7.1 (Lemma 8 in [8]). If M is a finite monogenic inverse submonoid of In, then 
there exist a, b ∈ N \ {0} such that a + b = n and M is isomorphic to the inverse 
submonoid of In generated by

x = [1, . . . , a] ∪ p

where p is some permutation on the set {a+1, . . . , a+ b}. Moreover, if o(p) is the (group 
theoretic) order of p, then M is isomorphic to the submonoid of Ia+o(p) generated by 
[1, . . . , a] ∪ (a + 1, . . . , a + o(p)).

Let n, k ∈ N be such that n ≥ 0 and k ≥ 1 and let Sn,k be defined by the inverse 
monoid presentation
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Inv⟨x | xnx−n = xn+1x−(n+1), xnx−n = xnx−nxk⟩.

Theorem 7.2 (Theorem 10 in [8]). The inverse submonoid of In+k generated by a partial 
permutation

[1, 2, . . . , n] ∪ (n + 1, n + 2, . . . , n + k)

is isomorphic to Sn,k for all n ≥ 0 and k ≥ 1. Moreover, if m ≥ 0 and l ≥ 1, then 
Sn,k

∼ = Sm,l if and only if n = m and k = l.

Lemma 7.3. Let n ≥ 0 and k ≥ 1. Then every element of Sn,k can be uniquely expressed 
in the form x−axbx−bxc where a, c ≤ b < n or xnx−nxa where 0 ≤ a < k; and E(Sn,k) =
{x−axbx−bxa | a ≤ b < n} ∪ {xnx−n}.

Proof. By [8, Lemma 6] (or [7, Proposition 4]) the set of words of the form x−axbx−bxc

with b < n contains representatives for every element of Sn,k. In particular, x−axbx−bxc

when restricted to the set {1, . . . , n} is the partial permutation {(a+1, c+1), (a+2, c+
2), . . . , (a+(n− b), c+(n− b))}. Hence distinct words of the form x−axbx−bxc represent 
distinct elements of Sn,k. The remaining elements of the monoid are those in the ideal 
generated by xnx−n. Since Sn,k and the inverse monoid generated by x = [1, . . . , n](n+
1, . . . , n+k) coincide (by Theorem 7.2), xnx−n is the identity on {n+1, . . . , n+k}, and 
so xnx−nx = (n + 1, . . . , n + k) generates a cyclic group of order k.

The claim about idempotents is immediate from Theorem 7.2. □
Lemma 7.4. [Theorem 2 in [37]] If n ≥ 1 and k ≥ 1, then

|Sn,k| = n(n + 1)(2n + 1)
6 

+ k.

Note that S0,k = S1,k and so |S0,k| = k + 1.
The next theorem is the main result of this section, characterising the idempotent-pure 

congruences on Sn,k when n ≥ 0 and k ≥ 1.

Theorem 7.5. If ρ is a non-trivial congruence on Sn,k, then Sn,k/ρ ∼ = Sn′,k′ , where 
1 ≤ n′ ≤ n and k′|k. Moreover, ρ is idempotent-pure if and only if k′ = k and n ≤ k.

Proof. Every homomorphic image of an inverse monoid is an inverse monoid, and since 
Sn,k is monogenic, Sn,k/ρ is monogenic also. In particular, Sn,k/ρ is isomorphic to Sn′,k′ , 
for some n′ ≤ n and k′ ≤ k (by Lemma 7.1, and Theorem 7.2). Since Sn′,k′ contains a 
cyclic subgroup of order k′ (by Theorem 7.2) it follows that k′|k.

We now show that if ρ is idempotent-pure, then k′ = k and n ≤ k. Suppose ρ is 
idempotent-pure. Since k′|k it suffices to show that k′ ≥ k. Seeking a contradiction, 
suppose that k′ < k. Then
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[xnx−n]ρ = [xn′
x−n′

]ρ = [xn′
x−n′

xk′
]ρ = [xnx−nxk′

]ρ.

But xnx−nxk′
/ ∈ E(Sn,k) by Lemma 7.3, a contradiction. It follows that k′ = k.

It remains to show that n ≤ k. If n > k = k′, then since n′ ≤ n, we can assume 
n′ < n, as otherwise ρ would be trivial. So

[xn−1x−(n−1)]ρ = [xn′
x−n′

]ρ = [xn′
x−n′

xk]ρ = [xn′
x−n′

xk′
]ρ = [x(n−1)x−(n−1)xk]ρ,

where x(n−1)x−(n−1)xk / ∈ E(Sn,k) by Lemma 7.3. Thus ρ is not idempotent-pure, a 
contradiction. Hence k′ = k and n ≤ k as required.

For the converse, suppose that k′ = k and n ≤ k. Then for all 0 ≤ a, c ≤ b < n, 
1 ≤ f ≤ n, and e, g < max(n, k)

[x−axbx−bxa]ρ = [x−exfx−fxg]ρ
=⇒ (b = f and e = g = a) or (b, f ≥ n′ and − a + a = −e + g)

=⇒ (b = f and e = g = a) or (b, f ≥ n′ and e = g)

=⇒ e = g.

Hence x−exfx−fxg is an idempotent by Lemma 7.3. Also

[xnx−n]ρ = [x−exfx−fxg]ρ =⇒ f ≥ n′ and 

k′|(g − e) =⇒ k|(g − e) =⇒ g − e = 0 =⇒ e = g

so x−exfx−fxg is again an idempotent, and ρ is idempotent-pure. □
Next, we use Theorem 7.5 to characterise the E-disjunctive finite monogenic inverse 

monoids.

Corollary 7.6. A finite monogenic inverse monoid is E-disjunctive if and only if it is 
isomorphic to Sn,k for some k, n with n > k or n = 1.

Proof. By Theorem 7.5, a congruence ρ on Sn,k is idempotent-pure if and only if k′ = k

and n ≤ k (where Sn,k/ρ ∼ = Sn′,k′). Let P (n, k) be the statement: for all (n′, k′) ̸= (n, k)
with 1 ≤ n′ ≤ n, 1 ≤ k′|k, either k′ ̸= k or n > k. So Sn,k is E-disjunctive if and only if 
P (n, k) is true. We show that P (n, k) holds if and only if n > k or n = 1.

(⇒): Suppose P (n, k) is true. If n = 1, then the proof is complete. Otherwise set 
n′ = 1 < n and k′ = k. Since P (n, k) holds, either k′ ̸= k or n > k. Hence, since k′ = k, 
n > k, as required.

(⇐): If n > 1, then n > k, and so P (n, k) holds immediately. Otherwise if n = 1, then 
for all n′ ≤ n and k′|k with (n′, k′) ̸= (n, k), n′ = n = 1 and so k′ ̸= k. Hence in either 
case P (n, k) holds. □
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We conclude this section by showing that, asymptotically, almost none of the mono
genic inverse monoids are E-disjunctive.

Corollary 7.7. The proportion of isomorphism classes of monogenic inverse monoids of 
size at most m which are E-disjunctive tends to 0 as m tends to infinity.

Proof. Let m ∈ Z≥1 be given. By Theorem 7.2, the number of monogenic inverse monoids 
up to isomorphism with size at most m equals the number of Sn,k such that |Sn,k| ≤ m. 
Similarly, by Corollary 7.6, the number of E-disjunctive monogenic inverse monoids up 
to isomorphism with size at most m equals the number of Sn,k such that |Sn,k| ≤ m

where n > k or n = 1. In particular, it suffices to find the proportion of pairs {(n, k) ∈
Z≥0 × Z≥1 | |Sn,k| ≤ m} such that n > k or n = 1. By Lemma 7.4,

|Sn,k| = n(n + 1)(2n + 1)
6 

+k ≤ m if and only if k ≤ m−
n ∑︂

i=0 
i2 = m−n(n + 1)(2n + 1)

6 
.

For all j ∈ Z≥1, there exists mj ∈ Z≥1 such that mj ≥ j and the number of (n, k), 
such that |Sn,k| ≤ mj is greater than jmj . For example, if j = 6, then for m ≥ 105, the 
number of (n, k) with |Sn,k| ≤ m is

∞ ∑︂
n=1

max
(︄
m−

n ∑︂
i=0 

i2, 0
)︄

≥
6 ∑︂

n=1

(︄
m−

n ∑︂
i=0 

i2

)︄

= m + (m− 1) + (m− 5) + (m− 14) + (m− 30) + (m− 55)

= 7m− 105 ≥ 6m.

We next find an upper bound for the number of (n, k) such that Sn,k is E-disjunctive 
and |Sn,k| ≤ m. It suffices to give an upper bound for the number of pairs in {(n, k) ∈
Z≥0 × Z≥1 | |Sn,k| ≤ m} such that n > k or n = 1:

∞ ∑︂
n=1

|{k ∈ Z≥1 | (n > k or n = 1) and |Sn,k| ≤ m}|

= |{k ∈ Z≥1 | |S1,k| ≤ m}| +
∞ ∑︂

n=2
|{k ∈ Z≥1 | n > k and |Sn,k| ≤ m}|

= |{k ∈ Z≥1 | k + 1 ≤ m}| +
∞ ∑︂

n=2
|{k ∈ Z≥1 | n > k and n(n + 1)(2n + 1)/6 + k ≤ m}|

= m− 1 +
∞ ∑︂

n=2
|{k ∈ Z≥1 | n > k and n(n + 1)(2n + 1)/6 + k ≤ m}|

= m− 1 +
∞ ∑︂

n=2
|{k ∈ Z≥1 | n > k and k ≤ m− n(n + 1)(2n + 1)/6}|
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≤ m− 1 +
∞ ∑︂

n=2
min(max(m− n(n + 1)(2n + 1)/6, 0), n− 1)

≤ m− 1 +
∞ ∑︂

n=2
min(max(m− n3/6, 0), n− 1)

≤ m− 1 +
⌊ 3√6m⌋∑︂
n=2 

min(m− n3/6, n− 1)

≤ m− 1 +
⌊ 3√6m⌋∑︂
n=2 

n− 1

≤ m− 1 − 3
√

6m +
3
√

6m( 3
√

6m + 1)
2 

≤ m + 3
√

6m 3
√

6m + 1

≤ 7m.

Thus

lim 
m→∞

# monogenic E-disjunctive inverse semigroups of size at most m
# monogenic inverse semigroups of size at most m ≤ lim 

n→∞
7mn

nmn

= lim 
n→∞

7 
n

= 0. □

Part 3. A structure theory for 𝑬-disjunctive inverse semigroups

In this part of the paper we consider various structural properties of E-disjunctive 
semigroups. In Section 8 we find a bound on the ratio of idempotent to non-idempotent 
elements in an E-disjunctive semigroup; in Section 9 we consider the maximum E
disjunctive homomorphic images of an inverse semigroup; in Section 10 we define a 
notion we refer to as preactions which is used extensively in the final section Section 11; 
where we prove that every inverse semigroup can be defined in terms of a semilattice 
and an E-disjunctive inverse semigroup.

8. Ratio of idempotents to non-idempotents

Roughly speaking semilattices are as far from being E-disjunctive as possible. More 
specifically, every E-disjunctive homomorphic image of a semilattice is trivial. In this 
section, we precisely formalise this notion by showing that inverse semigroups with too 
many idempotents are not E-disjunctive. In particular, we will prove the following the
orem.

Theorem 8.1. Let S be an E-disjunctive inverse semigroup and κ = |S \ E(S)|. Then 
|S| ≤ 2κ + κ.
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If S is a finite inverse semigroup, then we define h : S → N≥0 so that (s)h is the 
largest value in N≥0 such that there is a chain with maximum element s of this length 
in the natural partial order of S.

In the following we require the notion of Green’s relations on a semigroup S, which we 
briefly recall; see [14, Chapter 2] for more details. Green’s R-relation is the equivalence 
relation on S consisting of those pairs (a, b) ∈ S × S that generate the same principal 
right ideal of S, i.e. aS1 = {as | s ∈ S} ∪ {a} = bS1. Green’s L -relation is the left ideal 
dual of R, and Green’s D- is defined as D = L ◦R. If a, b ∈ S and aS1 ⊆ bS1, then we 
write a ≤R b, and likewise for ≤L .

Lemma 8.2. If S is a finite inverse semigroup and s, t ∈ S are such that s ≤R t or 
s ≤L t, then (s)h ≤ (t)h.

Proof. We prove the lemma in the case that s ≤R t, the proof in the other case is 
similar. Let s′ ∈ S be such that ts′ = s. Suppose that n = (t)h and suppose that 
t1 := t, t2, . . . , tn ∈ S are such that ti > ti+1 for all i. We set si = tis

′ for all i. Since 
ti+1 ≤ ti implies ti+1 = (ti+1t

−1
i+1)ti (by [14, Proposition 5.2.1]) it follows that

si+1 = ti+1s
′ = (ti+1t

−1
i+1)tis

′ = (ti+1t
−1
i+1)si ≤ si

and so (s)h ≥ (t)h. □
Lemma 8.3. Let S be a finite inverse semigroup. If s, t ∈ S are such that sDt, then 
(s)h = (t)h.

Proof. Since sDt, there exists u ∈ S such that sRuL t and so (s)h = (u)h = (t)h, by 
Lemma 8.2. □
Lemma 8.4. Let S be a finite inverse semigroup and let e, f ∈ S be distinct idempotents. 
If (f)h ≤ (e)h, then (ef)h < (e)h.

Proof. If e and f are incomparable, then ef < e or ef < f . In either case, (e)h ≥ (f)h >

(ef)h. Otherwise, f < e, and so ef < e and (ef)h < (e)h. □
If S is a finite inverse semigroup, then we define N(S) to be the set of idempotents in 

e ∈ S such that there exists a non-idempotent u ∈ S such that uu−1 = e. We also define

ϕS : E(S) → 𝒫(N(S))

by

(f)ϕS =
{︂
e ∈ N(S) 

⃓⃓⃓
e ≤ f

}︂
.
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Lemma 8.5. If S is a finite inverse semigroup, then ϕS : E(S) → 𝒫(N(S)) defined by

(f)ϕS = {e ∈ N(S) | e ≤ f}

is a homomorphism where the operation on 𝒫(N(S)) is ∩.

Proof. Let e, f ∈ E(S), and g ∈ N(S). Then

g ∈ (e)ϕS ∩ (f)ϕS ⇐⇒ g ≤ e and g ≤ f

⇐⇒ ge = g = gf

⇐⇒ gef = g

⇐⇒ g ≤ ef

⇐⇒ g ∈ (ef)ϕS . □
If I is an ideal of an inverse semigroup S, then the natural partial order on I is just 

the intersection of the natural partial order of S with I × I.

Lemma 8.6. If S is a finite E-disjunctive inverse semigroup, then ϕS : E(S) → 𝒫(N(S))
is an embedding.

Proof. By Lemma 8.5, we need only show that ϕS is injective. We proceed by induction 
on (S)h := max{(s)h | s ∈ S}. If (S)h = 0, then S = ∅ and so ϕS is an embedding.

Suppose that (S)h = k and the result holds for all finite E-disjunctive inverse semi
groups T with (T )h < k. Then the set I := {s ∈ S | (s)h < k} is an ideal of S, 
and (I)h = k − 1, and I is E-disjunctive by Lemma 2.8. Thus by induction ϕI is an 
embedding.

Suppose that there exist e, f ∈ E(S) such that (e)ϕI = (f)ϕS . If e, f ∈ I, then, since 
ϕI is just the restriction of ϕS to I,

(e)ϕI = (e)ϕS = (f)ϕS = (f)ϕI

and so, since ϕI is injective, e = f , as required.
Hence it remains to prove the lemma in the case that e ̸∈ I or f ̸∈ I. Suppose without 

loss of generality that e ̸∈ I and, seeking a contradiction, that e ̸= f . By assumption,

(e)ϕS = (e)ϕS ∩ (e)ϕS = (e)ϕS ∩ (f)ϕS = (ef)ϕS . (3)

If there exists a non-idempotent u ∈ S such that e = uu−1, then e ∈ (e)ϕS . Since 
e ̸= f and (e)ϕS = (f)ϕS by assumption, e < f . It follows that (f)h > (e)h = k = (S)h, 
which is a contradiction.
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Suppose that uu−1 ̸= e for all non-idempotents u ∈ S, and suppose that ρ =
{(e, ef)}∪ΔS . To reach our final contradiction it suffices to show that ρ is a congruence. 
We show ρ is a right congruence; the proof that ρ is a left congruence is symmetric.

Let u ∈ S be arbitrary. If u = e, then eu = ee = e, ef = efe = efu, and (e, ef) ∈ ρ, 
and so (eu, efu) ∈ ρ. If u ̸= e, then we will also show that eu = efu. By assumption, 
uu−1 ̸= e. Since (e)h = k, it follows from Lemma 8.4, that euu−1, efuu−1 ∈ I. So

(euu−1)ϕI = (euu−1)ϕS

= (e)ϕS ∩ (uu−1)ϕS

= (ef)ϕS ∩ (uu−1)ϕS by (3)

= (efuu−1)ϕS

= (efuu−1)ϕI .

Thus euu−1 = efuu−1, since ϕI is an embedding and so eu = efu also. Therefore 
ρ is a non-trivial idempotent-pure congruence on S, and so S is not E-disjunctive, a 
contradiction. □

The converse of Lemma 8.6 is not true, for example, if S is the strong semilattice of 
groups defined by an identity map from the cyclic group C2 of order 2 to C2, then ϕS is 
injective, but S is not E-disjunctive.

Definition 8.7 (Syntactic readout). Let S be an inverse semigroup and let e ∈ E(S). Then 
syntactic readout of e is the function ϕe : ((S\E(S))∪{1S})×((S\E(S))∪{1S}) → {0, 1}
defined by

(α, β)ϕe =
{︄

0 if αeβ ∈ E(S)
1 if αeβ / ∈ E(S)

for all α, β ∈ S \ E(S) ∪ {1}.

Lemma 8.8. Let S be an E-disjunctive inverse semigroup and let e, f ∈ E(S). Then 
ϕe = ϕf (i.e. e and f have the same syntactic readout) if and only if e = f .

Proof. The converse implication is trivial.
For the forward implication, since S is E-disjunctive, it follows from Lemma 2.5 that 

the syntactic congruence on S is ΔS . Suppose that e, f ∈ E(S) have the same syntactic 
readout. To show e = f , it suffices to show that (e, f) belongs to the syntactic congruence 
of S. In other words, to show that

αeβ ∈ E(S) ⇐⇒ αfβ ∈ E(S) (4)

for all α, β ∈ S1. By assumption, (4) holds for all α, β ∈ S1 \ E(S).
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Suppose that α ∈ E(S) or β ∈ E(S). We may suppose without loss of generality 
that α ∈ E(S) and that αeβ ∈ E(S). Since α ∈ E(S), αeβ = eαβ and αfβ = fαβ. If 
αβ ∈ E(S), then fαβ = αfβ ∈ E(S). Otherwise, αβ / ∈ E(S), and since (1S , αβ)ϕe =
(1S , αβ)ϕf it follows that eαβ ∈ E(S) implies fαβ ∈ E(S). Hence in both cases αeβ ∈
E(S) implies αfβ ∈ E(S), and the converse implication follows by symmetry. □
Proof of Theorem 8.1. We consider the cases when S is finite and infinite separately.

Suppose that S is finite. Clearly, |S| = |E(S)| + n. By Lemma 8.6, it follows that

|S| = |E(S)| + n = |(E(S))ϕS | + n ≤ |𝒫(N(S))| + n.

The map sending a non-idempotent s of S to ss−1, is surjective with image set N(S). 
Thus |N(S)| ≤ n. In particular

|S| ≤ |𝒫(N(S))| + n = 2|N(S)| + n ≤ 2n + n.

Suppose that S is infinite, and that κ = |S \ E(S)|. By Lemma 8.8, idempotents of 
S are uniquely determined by their syntactic readouts. There are at most (2κ)(2κ) = 2κ
syntactic readouts and so |S| ≤ 2κ + κ. □
Corollary 8.9. Let S be an infinite E-disjunctive inverse semigroup. Then S has infinitely 
many non-idempotents.

The next example shows that the bound in Theorem 8.1 is sharp.

Example 8.10. Let κ be a finite or infinite cardinal. We define a Clifford semigroup S
with κ non-idempotents and 2κ idempotents by defining a strong semilattice of groups. 
The semilattice Y is the power set of κ under intersection; the groups are defined by:

Gy =
{︄

1 if |y| ̸= 1
C2 if |y| = 1

for all y ∈ Y where 1 denotes the trivial group and C2 the cyclic group of order 2; 
and every homomorphism ψy,z : Gy → Gz with y, z ∈ Y is constant; see Fig. 2 for 
an example. Clearly there is an idempotent in S for every subset of κ, and there is a 
non-idempotent for every element of κ. Hence |S| = 2κ + κ. Since S is a semilattice of 
abelian groups, S is also commutative. 

It remains to show that S is E-disjunctive. Let e, f ∈ E(S) be such that e < f . If 
e and f are the idempotents belonging to Gy and Gz, respectively, then we abuse our 
notation by writing ψe,f instead of ψy,z. By [1, Theorem 6], it suffices to show that there 
exists g ∈ E(S) such that the map ψeg,fg is not injective. Since e < f , f is non-zero. 
For this semigroup S, N(S) = {h ∈ E(S) | h ∈ Gy for some y ∈ Y with |y| = 1}. If 
f ∈ N(S), then we set g = f > e and so g ̸≤ e. If f ̸∈ N(S), then there exists g ∈ N(S)
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1 1 1

C2 C2 C2

1

Fig. 2. Egg-box diagram of a semigroup that attains the bound in Theorem 8.1 when κ = 3. 

such that g ≤ f and g ̸≤ e by the construction of S. In either case, g ∈ N(S), g ̸≤ e, 
and g ≤ f . Hence eg < g and fg = g. The former implies that eg = 0, and so ψfg,eg is a 
constant function from C2 to a trivial group, and is not injective, as required.

9. Maximum 𝑬-disjunctive images

Every inverse semigroup S has an E-disjunctive quotient: the quotient of S by its 
syntactic congruence ρ. By Lemma 2.4, if T is any E-disjunctive semigroup such that 
T is a homomorphic image of S, then T is a quotient of S/ρ. As such we refer to S/ρ
as the maximum E-disjunctive quotient of the inverse semigroup S. Since quotients and 
homomorphic images are interchangeable, we may also refer to S/ρ as the maximum 
E-disjunctive image of S. We will show that many properties can be exchanged between 
an inverse semigroup and its maximum E-disjunctive image. The situation is somewhat 
similar to the relationship between an E-unitary inverse semigroup and its maximum 
group homomorphic image. Of course, unlike the case for maximum group images, max
imum E-disjunctive images are not always groups, and so it is not clear to what extent 
this can be used to study inverse semigroups in general. In this section we will explore 
the relationship between an inverse semigroup and its maximum E-disjunctive image. 
In Section 11, we show that every inverse semigroup is described by its maximum E
disjunctive image and semilattice of idempotents, somewhat analogous to the description 
of E-unitary inverse semigroup via McAlister triples.

An inverse semigroup is E-unitary if and only if its minimum group congruence is 
idempotent-pure. Since every group is E-disjunctive, it follows that the maximum E
disjunctive image of an E-unitary inverse semigroup is a group. Conversely, if S is an 
inverse semigroup whose maximum E-disjunctive homomorphic image is a group, then 
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the maximum group and E-disjunctive images coincide. In other words, we have the 
following result.

Proposition 9.1. The maximum E-disjunctive image of an inverse semigroup S is a group 
if and only if S is E-unitary.

Next, we use a theorem of Kambites [16] to show that a finitely generated inverse 
semigroup is finite if and only if its maximum E-disjunctive image is finite. To do this, 
we first define the idempotent problem of a finitely generated inverse semigroup S as 
follows. Let Σ be a finite generating set for S. Then the idempotent problem of S, with 
respect to Σ, denoted IP(S,Σ) is the language consisting of all words over Σ∪Σ−1 that 
represent idempotents in S.

Theorem 9.2 ([16]). Let S be an inverse semigroup with a finite generating set Σ. Then 
S is finite if and only if IP(S,Σ) is a regular language.

Theorem 9.2 allows us to characterise the inverse semigroups with finite maximum 
E-disjunctive image as follows.

Theorem 9.3. Let S be a finitely generated inverse semigroup. Then S has a finite max
imum E-disjunctive image if and only if S is finite.

Proof. (⇐): Since quotients of finite semigroups are finite, if S is finite, then so is its 
maximum E-disjunctive image.

(⇒): Suppose that S has a finite maximum E-disjunctive image T , that Σ is a finite 
generating set for S, and that ϕ : S → T is an idempotent-pure epimorphism. Since ϕ
is idempotent-pure and surjective, ϕ induces a bijection between E(S) and E(T ) and 
an isomorphism from the free monoid (Σ ∪ Σ−1)∗ with generators Σ ∪ Σ−1 and the 
free monoid ((Σ ∪ Σ−1)ϕ)∗ that maps IP(S,Σ) to IP(T, (Σ)ϕ). By Theorem 9.2, since 
T is finite, IP(T, (Σ)ϕ) is a regular language. Thus IP(S, Σ), as the image under an 
isomorphism of a regular language, is itself regular. Applying Theorem 9.2 again yields 
that S is finite. □

Every semilattice has trivial maximum E-disjunctive image. Since every finitely gen
erated semilattice is finite, if S is an infinite semilattice, then S is not finitely generated, 
but its maximum E-disjunctive image is finite. In other words, the finitely generated 
hypothesis in Theorem 9.3 cannot be removed.

Lemma 9.4. Let ϕ : S → T be an idempotent-pure homomorphism. Then ϕ|R is injective 
for every R-class R of S.



L. Elliott et al. / Journal of Algebra 687 (2026) 292--344 325

Proof. Suppose that a, b ∈ S are such that aRb and suppose that (a)ϕ = (b)ϕ. By 
Green’s Lemma the map λ : Ra → Ra−1a defined by left multiplying by a−1 is a bijection. 
Hence

(a−1a)ϕ = (a−1)ϕ · (a)ϕ = (a−1)ϕ · (b)ϕ = (a−1b)ϕ

and a−1aRa−1b (since R is a left congruence). Hence we may assume without loss of 
generality that a is an idempotent.

Since ϕ is idempotent-pure and (a)ϕ = (b)ϕ, it follows that b is an idempotent. Hence 
since aRb this implies a = b. □
10. Preactions

In this section we define a notion that is a weakening of the notion of an inverse semi
group action. This idea is somewhat analogous to the notion of partial actions introduced 
in [17]. We require this somewhat technical section in order to prove a generalisation of 
McAlister’s P -Theorem [26] in Section 11. This generalisation describes every inverse 
semigroup in terms of an E-disjunctive inverse semigroup and a semilattice.

If 𝒴 is a subset of a poset 𝒳 , then we write 𝒴↓ = {x ∈ 𝒳 | ∃y ∈ 𝒴, x ≤ y} for the 
order ideal of 𝒳 generated by 𝒴.

Recall that a partial function from X to Y is a function from a subset of X to a subset 
of Y . We will generalise the notation f : X → Y to denote a partial function from X to 
Y .

Definition 10.1 (Action). Suppose that S is an inverse semigroup, that 𝒴 is a poset (we 
view an unordered set as a poset in which all elements are incomparable when needed), 
and that α : 𝒴 × S → 𝒴 is a partial function. If s ∈ S, then we define sα : 𝒴 → 𝒴 to 
be the partial function defined by (y)sα = (y, s)α. We write sα rather than sα, to avoid 
having to write parentheses, for example, we write stα instead of (st)α. We say that α
is an action of S on 𝒴 if the following hold for all s, t ∈ S:

(1) the partial function sα is an order isomorphism between subsets of 𝒴;
(2) stα = sαtα and s−1

α = s−1
α.

Definition 10.2 (Preaction). Suppose that S is an inverse semigroup, that 𝒴 is a poset, 
and that q : 𝒴 × S → 𝒴 is a partial function. If s ∈ S1, then we define sq : 𝒴 → 𝒴 to 
be the partial function defined by (y)sq = (y, s)q (using the identity function if s is the 
adjoined identity in S1). We say that q is a preaction of S on 𝒴 if the following hold for 
all s, t, u ∈ S1: 

(1) the partial function sq is an order isomorphism between subsets of 𝒴;
(2) if s ≤ t, then sq ⊆ tq;
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(3) if (x, y) ∈ sq and (y, z) ∈ tq, then (x, z) ∈ stq, and if (x, y) ∈ sq then (y, x) ∈ s−1
q.

(4) dom(sq)↓ = dom(sq);
(5) for all y ∈ 𝒴, there is e ∈ E(S) such that y ∈ dom(eq).

Lemma 10.3. Suppose that S is an inverse semigroup, that 𝒴 is a poset, and that q : 𝒴 ×
S → 𝒴 is a preaction. If s, t ∈ S1 and e ∈ E(S), then the following hold: 

(6) sqtq ⊆ stq;
(7) If y, z ∈ 𝒴, s, t ∈ S, and any two of (x, y) ∈ sq, (y, z) ∈ tq, (x, z) ∈ stq hold, then 

so does the third;
(8) If e ∈ E(S) is an idempotent, then eq is a partial identity function.

Proof. (6) This is an immediate consequence of (3).
(7) If y, z ∈ 𝒴, s, t ∈ S, (x, y) ∈ sq, and (y, z) ∈ tq, then we have (x, z) ∈ stq by (3). If 
(x, y) ∈ sq and (x, z) ∈ stq, then by (3), (y, x) ∈ s−1

q and so (y, z) ∈ s−1stq. Thus by (2), 
(y, z) ∈ tq. If (y, z) ∈ tq and (x, z) ∈ stq, then by (3), (z, y) ∈ t−1

q and so (x, y) ∈ stt−1
q. 

Thus by (2), (x, y) ∈ sq.
(8) From (6), we have that eqeq ⊆ eq, and so (x)eq = x for all x ∈ im(eq). By (3), 
dom eq = im(e−1

q) = im(eq), and so eq is a partial identity function. □
If q : 𝒴 × S → 𝒴 in Definition 10.2 is an inverse semigroup action, then q satisfies 

Definition 10.2(1), (2), and (3) and all conditions in Lemma 10.3.

Example 10.4. Suppose that minN = 0. We define a preaction q of the additive group 
Z on the set 𝒴 := −N as follows:

dom(q) = {(n, z) ∈ (−N) × Z | n + z ∈ (−N)}, and (n, z)q = n + z.

In this example, if z ∈ Z, then (n)zq = n + z and dom(zq) = {x ∈ Z | x ≤ −z}. Since 
we are using additive notation for Z, the conditions in Definition 10.2 become additive; 
for example, (3) becomes ``if (x, y) ∈ sq and (y, z) ∈ tq, then (x, z) ∈ s + tq''. It is routine 
to verify that satisfies Definition 10.2. The preaction q is clearly not an action in the 
usual sense, but it can be extended to an action in a natural way.

The main result in this section is the following result, which, roughly speaking, states 
that every preaction can be extended to an inverse semigroup action, albeit on a larger 
set.

Theorem 10.5. Let 𝒴 be a poset and let S be an inverse semigroup. If q : 𝒴 × S → 𝒴 is 
a preaction, then there is a poset 𝒳q ⊇ 𝒴 and an action (by partial order isomorphisms) 
αq : 𝒳q × S → 𝒳q such that 

(1) 𝒴 is an order ideal of 𝒳q;
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(2) the restriction of αq to (𝒴 × S) ∩ (𝒴)α−1
q equals q;

(3) if a, b ∈ 𝒳q, then a ≤ b if and only if there is s ∈ S1 such that (a, s)αq, (b, s)αq ∈ 𝒴
and (a, s)αq ≤ (b, s)αq.

To prove this, roughly speaking, we will define a set 𝒳 ′
q consisting of the pairs in 𝒴×S

that we want to lie in the domain of αq. In particular, if we can act on a point using an 
element s via αq, we should be able to act on it with every left divisor of s first, in order 
for composition to work properly. The proof has the following steps:

• we define 𝒳 ′
q in (5);

• we define a function α′
q : 𝒳 ′

q × S → 𝒳 ′
q of S on 𝒳 ′

q in (6);
• prove that α′

q is an action on 𝒳 ′
q in (10.6);

• we define a preorder ⪯ on 𝒳 ′
q in Lemma 10.7;

• we show that the action α′
q preserves the preorder ⪯ in Lemma 10.8.

• we define the partially ordered set 𝒳q to be the quotient of 𝒳 ′
q by the equivalence 

classes of ⪯ with the partial order induced by ⪯.
• we define an order-embedding ϕ of 𝒴 (from Theorem 10.5) into 𝒳q in (9) and 

Lemma 10.9. It follows that 𝒴 can be identified with an (order-isomorphic) sub
set of 𝒳q.

• we show that the domain of q : 𝒴 × S → 𝒴 is downwards-closed in 𝒳q under the 
partial order induced by ⪯ in Lemma 10.10.

At that point we will have the necessary preliminaries to be able to give the proof of 
Theorem 10.5.

We define:

𝒳 ′
q =

{︂
(y, s) ∈ 𝒴 × S 

⃓⃓⃓
there exists s′ ∈ sS with (y, s′) ∈ dom(q)

}︂
(5)

and α′
q : 𝒳 ′

q × S → 𝒳 ′
q by

((y, s), t)α′
q = (y, st) (6)

if and only if (y, s) ∈ 𝒳 ′
q satisfies s ∈ St−1 and (y, st) ∈ 𝒳 ′

q.
As we did in Definition 10.2, if t ∈ S, then we define tα′

q
: 𝒳 ′

q → 𝒳 ′
q by (y, s)tα′

q
=

((y, s), t)α′
q for all (y, s) ∈ 𝒳 ′

q. With this notation

dom(tα′
q
) =

{︂
(y, s) ∈ 𝒳 ′

q

⃓⃓⃓
s ∈ St−1 and (y, st) ∈ 𝒳 ′

q

}︂
.

Lemma 10.6. α′
q is an inverse semigroup action.

Proof. It suffices to verify the domains:

dom(sα′
q
) ∩ (dom(tα′

q
), s−1)α′

q =
{︁
(y, v) ∈ 𝒳 ′

q

⃓⃓
v ∈ Ss−1, (y, vs) ∈ 𝒳 ′

q, v ∈ St−1s−1
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and (y, vst) ∈ 𝒳 ′
q

}︁
=

{︂
(y, v) ∈ 𝒳 ′

q

⃓⃓⃓
v ∈ St−1s−1 and (y, vst) ∈ 𝒳 ′

q

}︂
= dom(stα′

q
). □

Lemma 10.7. If we define ⪯ on 𝒳 ′
q by (y1, s1) ⪯ (y2, s2) if there exists s3 ∈ S1 with

(y1, s1s3), (y2, s2s3) ∈ dom(q) and (y1, s1s3)q ≤ (y2, s2s3)q,

then ⪯ is a preorder.

Proof. By the definition of 𝒳 ′
q, ⪯ is reflexive. It remains to show that ⪯ is transitive. 

Suppose that (y1, s1), (y2, s2), (y3, s3) ∈ 𝒳 ′
q and there are s4, s5 ∈ S such that

(y1, s1s4), (y2, s2s4) ∈ dom(q) and (y1, s1s4)q ≤ (y2, s2s4)q (7)

(y2, s2s5), (y3, s3s5) ∈ dom(q) and (y2, s2s5)q ≤ (y3, s3s5)q. (8)

It suffices to show that

(y1, s1s5), (y3, s3s5) ∈ dom(q) and (y1, s1s5)q ≤ (y3, s3s5)q.

By (8), it is thus sufficient to show that

(y1, s1s5) ∈ dom(q) and (y1, s1s5)q ≤ (y2, s2s5)q.

As (y2, s2s4) ∈ dom(q) and (y2, s2s5) ∈ dom(q), it follows from Definition 10.2(3) that 
(y2, s2s4)q ∈ dom(s−1

4 s5
q
) and hence by Definition 10.2(2) and Lemma 10.3(6):

((y2, s2s4)q, s−1
4 s5)q = (y2, s2s4s

−1
4 s5)q = (y2, s2s5)q.

Moreover as dom(s−1
4 s5

q
) is an order ideal by Definition 10.2(4), it follows that 

((y1, s1s4)q, s−1
4 s5) ∈ dom(q) and hence

((y1, s1s4)q, s−1
4 s5)q = (y1, s1s5)q.

Since (y1, s1s4)q ≤ (y2, s2s4)q and s−1
4 s5

q
is ≤-preserving (by Definition 10.2(1)), it 

follows that

(y1, s1s5)q = ((y1, s1s4)q, s−1
4 s5)q ≤ ((y2, s2s4)q, s−1

4 s5)q = (y2, s2s5)q,

as required. □
Lemma 10.8. The action α′

q is ⪯-preserving.
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Proof. If t ∈ S and (y1, s1), (y2, s2) ∈ dom(tα′
q
) and there is s3 ∈ S1 with (y1, s1s3)q ≤

(y2, s2s3)q, then s1, s2 ∈ St−1. Hence

(y1, s1tt
−1s3)q = (y1, s1s3)q ≤ (y2, s2s3)q = (y2, s2tt

−1s3)q

so ((y1, s1), t)α′
q = (y1, s1t) ⪯ (y2, s2t) = ((y2, s2), t)α′

q, and the action α′
q is ⪯

preserving. □
We write (y1, s1) ∼ (y2, s2) if (y1, s1) ⪯ (y2, s2) and (y2, s2) ⪯ (y1, s1), and denote 

by [(y, s)]∼ the ∼-equivalence class of (y, s) ∈ 𝒳 ′
q. Let 𝒳q be the quotient of 𝒳 ′

q by 
the equivalence relation ∼. Then 𝒳q is partially ordered by [(y1, s1)]∼ ≤ [(y2, s2)]∼ if 
(y1, s1) ⪯ (y2, s2).

We define ϕ : 𝒴 → 𝒳q by

(y)ϕ = [(z, u)]∼ if (y)q−1 ⊆ [(z, u)]∼. (9)

Lemma 10.9. ϕ is a well-defined order-embedding and dom(ϕ) = 𝒴.

Proof. If (y)ϕ = [(z, u)]∼ and (y)ϕ = [(z′, u′)]∼, then without loss of generality (z, u)q =
y = (z′, u′)q and so (z, u) ∼ (z′, u′), meaning that ϕ is well-defined. We show that there 
is (z, u) ∈ 𝒳 ′

q such that (z, u)q = y. By Definition 10.2(5) we can pick z = y and u = e

for some idempotent e such that y ∈ dom(eq). This implies that the domain of ϕ is 𝒴. 
If y1, y2 ∈ 𝒴, and (z1, u1) ∈ (y1)q−1 and (z2, u2) ∈ (y2)q−1 for some z1, z2, u1, u2, then

y1 ≤ y2 ⇐⇒ (z1, u1)q ≤ (z2, u2)q

⇒ (z1, u1) ⪯ (z2, u2)

⇐⇒ [(z1, u1)]∼ ≤ [(z2, u2)]∼
⇐⇒ y1ϕ ≤ y2ϕ.

Thus to conclude both that ϕ is injective and order-preserving it suffices to show that 
(z1, u1) ⪯ (z2, u2) implies that (z1, u1)q ≤ (z2, u2)q. By the definition of ⪯, there exists 
s3 ∈ S such that (z1, u1s3)q ≤ (z2, u2s3)q. By assumption, for i ∈ {1, 2}, zi ∈ dom(uiq

)
and zi ∈ dom(uis3q). In other words, (zi, (zi)uiq

) ∈ uiq
and (zi, (zi)uis3q) ∈ uis3q. Then 

Lemma 10.3(7) tells us ((zi)uiq
, (zi)uis3q) ∈ s3q. In particular, zi ∈ dom(uiq

s3q). Hence

(z1, u1)q = (z1)u1q definition of u1q

= (z1)u1qs3qs3
−1
q

s3qs3
−1
q

is the identity on dom(s3q)

= (z1)u1s3qs3
−1
q

= (z1, u1s3)q · s3
−1
q
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≤ (z2, u2s3)q · s3
−1
q

s3q is a partial order-isomorphism of 𝒴
= (z2, u2)q. □

In light of Lemma 10.9, we may identify 𝒴 with its image under ϕ, and define the 
partial order on 𝒴 to be that induced by the preorder ⪯ on 𝒳 ′

q. We abuse notation by 
using ⪯ to denote this partial order on 𝒳q.

Lemma 10.10. The domain of q is downwards closed; that is, if (y1, s1) ∈ dom(q), and 
(y2, s2) ⪯ (y1, s1), then (y2, s2) ∈ dom(q).

Proof. Let (y1, s1) ∈ dom(q) and (y2, s2) ⪯ (y1, s1). Then by the definition of ⪯ there 
exists s3 ∈ S1 such that

(y1, s1s3), (y2, s2s3) ∈ dom(q), (y2, s2s3)q ≤ (y1, s1s3)q.

Since (y1, (y1)s1q) ∈ s1q and (y1, (y1)s1s3q) ∈ s1s3q, it follows by (3) that ((y1)s1q, 
(y1)s1s3q) ∈ s3q (y1)s1qs3q = (y1)s1s3q; see Fig. 3. In particular, ((y1)s1q, s3) ∈ dom(q). 
Moreover ((y1)s1q, s3)q = (y1, s1s3)q ≥ (y2, s2s3)q. By (3), im(s3q) = dom(s−1

3 q
) which is 

an order ideal by (4) and so ((y2, s2s3)q) ∈ dom(s−1
3 q

). Applying (3) to (y2, (y2, s2s3)q) ∈
s2s3q and

((y2, s2s3)q, ((y2, s2s3)q, s−1
3 )q) ∈ s−1

3 q
,

we obtain (y2, ((y2, s2s3)q, s−1
3 )q) ∈ s2s3s

−1
3 q

.
Thus (y2, s2s3s

−1
3 ) ∈ dom(q) and, by (2), s2s3s

−1
3 q

⊆ s2q. In particular, (y2, s2s3s
−1
3 )q

= (y2, s2)q and so (y2, s2) ∈ dom(q). □
A particular case of Lemma 10.10 is the following.

Corollary 10.11. If (y, s) ∈ dom(q), then [(y, s)]∼ ⊆ dom(q) and (y, s)qϕ = [(y, s)]∼ =
(y, s)qq−1. In other words, [(y, s)]∼ϕ−1 = (z, t)q for any (z, t) ∈ [(y, s)]∼.

Proof of Theorem 10.5. We first establish part (1). Let [(y2, s2)]∼ ≤ [(y1, s1)]∼ ∈ (𝒴)ϕ. 
Then by the definition of ϕ, there is (y, s) ∈ dom(q) with [(y1, s1)]∼ = [(y, s)]∼. Then by 
Corollary 10.11, (y1, s1) ∈ dom(q). The assumption that [(y2, s2)]∼ ≤ [(y1, s1)]∼ implies 
that (y2, s2) ⪯ (y1, s1). Hence by Lemma 10.10, (y2, s2) ∈ dom(q) and so [(y2, s2)]∼ =
((y2, s2)q)ϕ ∈ (𝒴)ϕ, and we have shown part (1).

Define the partial function αq : 𝒳q × S → 𝒳q by

([(y, u)]∼, s)αq = [((y, u), s)α′
q]∼ = [(y, us)]∼

where
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y1

(y1)s1s3q
(y1)s1q

≤

(y2)s2s3q
y2

(y2)s2s3q
s−1
3 q

s1s3q
s1q

s3q

s−1
3 q

s2s3q

s2

Fig. 3. Diagram demonstrating the arguments in the second claim within the proof of Theorem 10.5. The 
dashed lines indicate an application of (3) starting with the arrow labelled s3q

and proceeding anti-clockwise.

dom(αq) =
{︂

([(y, u)]∼, s) ∈ 𝒳q × S 
⃓⃓⃓
(y, u) ∈ dom(sα′

q
)
}︂

=
{︂

([(y, u)]∼, s) ∈ 𝒳q × S 
⃓⃓⃓
u ∈ Ss−1 there is v ∈ S with (y, usv) ∈ dom(q)

}︂
.

It remains to check that the induced action of S on the copy (𝒴)ϕ of 𝒴 contained in 
𝒳q is isomorphic to the action of S on 𝒴. To this end we define ϕ⊕ idS : 𝒴 ×S → 𝒳q ×S

by

(y, s)ϕ⊕ idS = ((y)ϕ, s),

and

𝒵 = ((𝒴)ϕ× S) ∩ ((𝒴)ϕ)α−1
q .

That is we will show:

(ϕ⊕ idS) ◦ αq|𝒵 ◦ ϕ−1 = q.

We denote the function on the left hand side of the preceding equation by Q. Suppose 
that (y, s) ∈ dom(Q). It follows that y ∈ dom(ϕ). From Definition 10.2(5), there exists 
ey ∈ E(S) be such that (y, ey) ∈ dom(q). Then

(y, s)Q = (y, s)(ϕ⊕ idS) ◦ αq|Z ◦ ϕ−1

= ([(y, ey)]∼, s)αq|Z ◦ ϕ−1

= ([(y, eys)]∼)ϕ−1 by Corollary 10.11

= (y, eys)q

= (y, s)q by Definition 10.2(2).
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Thus q|dom(Q) = Q. If (y, s) ∈ dom(q), then, by the sequence of equalities above (in 
reverse order), (y, s) ∈ dom(Q). Hence q = Q. The map αq in the statement of the 
lemma can now be chosen by redefining 𝒳q := (𝒳q \ im(ϕ)) ∪ 𝒴 and the map αq by

(y, s)αq =
{︄

(y, s)αq y / ∈ 𝒴
((y)ϕ, s)αq y ∈ 𝒴.

As we previously showed that Q = q, it follows that now q = αq|(𝒴×S)∩(𝒴)α−1
q

and so 
part (2) of the theorem holds.

Since part (3) of the theorem implies that αq acts by partial order-isomorphisms 
on 𝒳q, the proof will be concluded by showing that part (3) holds. Suppose that 
[(y1, s1)]∼, [(y2, s2)]∼ ∈ 𝒳q. We must show that [(y1, s1)]∼ ≤ [(y2, s2)]∼ if and only if 
there exists t ∈ S1 such that ([(y1, s1)]∼, t)αq ≤ ([(y2, s2)]∼, t)αq ∈ (𝒴)ϕ.

By the definition of ≤, [(y1, s1)]∼ ≤ [(y2, s2)]∼ if and only if (y1, s1) ⪯ (y2, s2) if and 
only if (from the definition of ⪯) there exists t ∈ S1 such that (y1, s1t), (y2, s2t) ∈ dom(q)
and (y1, s1t)q ≤ (y2, s2t)q ∈ 𝒴. This holds if and only if there exists t ∈ S1 such 
that ([(y1, s1)]∼, t)αq = [(y1, s1t)]∼ ∈ (𝒴)ϕ, ([(y2, s2)]∼, t)αq = [(y2, s2t)]∼ ∈ (𝒴)ϕ, and 
([(y1, s1)]∼, t)αq ≤ ([(y2, s2)]∼, t)αq, as required. Hence part (3) of the theorem holds, 
and the proof of Theorem 10.5 is complete at last. □

The next corollary follows immediately from Theorem 10.5 and essentially states that 
preactions are precisely certain restrictions of certain actions.

Corollary 10.12. If S is an inverse monoid, 𝒴 is a poset, and q : 𝒴 × S → 𝒴 is a partial 
function, then q is a preaction if and only if q satisfies Definition 10.2(4) and (5) and 
there is an action αq of S on a poset 𝒳 ⊇ 𝒴 such that q = αq|(𝒴×S)∩(𝒴)q−1 .

11. The 𝑸-theorem

The goal of this section is to introduce a means of defining an inverse semigroup in 
terms of a natural action of an E-disjunctive semigroup on a poset, and also to show 
that every inverse semigroup can be defined this way (Theorem 11.2 and Theorem 11.3). 
This construction generalises that of McAlister triples for E-unitary inverse semigroups 
[26]. This theorem was already known and proved in [33]. The authors of the present 
paper only discovered [33] at a late stage of the preparation of this paper, and proved 
the characterisation independently.

Recall that if 𝒴 is a subset of a poset 𝒳 , then we write 𝒴 ↓= {x ∈ 𝒳 | ∃y ∈ 𝒴, x ≤ y}. 
If 𝒴 = 𝒴 ↓, then we say that 𝒴 is an order ideal in 𝒳 .

Definition 11.1 (Q-semigroup). Suppose that T is an inverse semigroup acting on a poset 
𝒳 by partial order isomorphisms and 𝒴 is a meet subsemilattice and order ideal of 𝒳
such that the following conditions hold:
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(1) For all t ∈ T , dom t = (dom t) ↓;
(2) For all y ∈ 𝒴, if we define

δ(y) =
⋂︂

{dom(s|𝒴) ⊆ 𝒴 | s ∈ T such that y ∈ dom(s|𝒴)},

then there exists t ∈ T with dom(t|𝒴) = δ(y).
(3) For all x ∈ 𝒳 , there is t ∈ T such that (x)t ∈ 𝒴.

Then we define Q(T,𝒴,𝒳 ) to be

Q(T,𝒴,𝒳 ) = {(y, t) ∈ 𝒴 × T | dom(t) = δ(y), (y)t ∈ 𝒴},

with multiplication defined by (y1, t1) · (y2, t2) = (((y1)t1 ∧ y2)t−1
1 , t1t2).

We note that part (2) in Definition 11.1, can be reformulated as:

(2)* for all y ∈ 𝒴, there exists t ∈ T such that dom(t|𝒴) contains y and is the least 
possible with respect to containment.

Note that δ : 𝒴 → 𝒫(𝒴) as defined in Definition 11.1 is a homomorphism (of semilat
tices) where the operation on 𝒫(𝒴) is ∩.

If (G,𝒴,𝒳 ) is a McAlister triple, then it will turn out that the inverse semigroups 
P (G,𝒴,𝒳 ) and Q(G,𝒴,𝒳 ) coincide.

The main theorems of this section are the following; which we prove in Section 11.1
and Section 11.2, respectively.

Theorem 11.2. If (T,𝒴,𝒳 ) satisfy the conditions in Definition 11.1, then Q(T,𝒴,𝒳 ) is 
an inverse semigroup.

A converse of Theorem 11.2 also holds.

Theorem 11.3. Every inverse semigroup S is isomorphic to some Q(T,𝒴,𝒳 ) from Defi
nition 11.1, where T is the maximum E-disjunctive homomorphic image of S, and 𝒴 is 
the semilattice of idempotents of S.

11.1. Q-semigroups are inverse semigroups

In this section we give the proof of Theorem 11.2.

Proof of Theorem 11.2. Let Q = Q(T,𝒴,𝒳 ). We begin by showing that the multipli
cation defined in Definition 11.1 is well-defined. Let (y1, t1), (y2, t2) ∈ Q. Then we 
must show (((y1)t1 ∧ y2)t−1

1 , t1t2) ∈ Q; that is dom(t1t2) = δ(((y1)t1 ∧ y2)t−1
1 ) and 

((y1)t1 ∧ y2)t−1
1 t1t2 ∈ 𝒴. Since (y1)t1 ∧ y2 ≤ y1t1 ∈ dom(t−1

1 ) and dom(t−1
1 ) is an order 
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ideal, it follows that (y1)t1 ∧ y2 ∈ dom(t−1
1 ). Similarly, (y1)t1 ∧ y2 ≤ y2 ∈ dom(t2) and 

so (y1)t1 ∧ y2 ∈ dom(t2). Hence ((y1)t1 ∧ y2)t−1
1 t1t2 = ((y1)t1 ∧ y2)t2 ≤ (y2)t2 ∈ 𝒴.

It remains to show that

δ(((y1)t1 ∧ y2)t−1
1 ) = dom(t1t2).

First note that for all t ∈ T and y ∈ dom(t) we have

(δ(y))t =

⎛
⎜⎜⎝ ⋂︂

s∈T
y∈dom(s)

dom(s)

⎞
⎟⎟⎠ t ⊆

⋂︂
s∈T

y∈dom(s)

dom(s)t

=
⋂︂
s∈T

y∈dom(s)

dom(t−1s) ⊆
⋂︂
s∈T

yt∈dom(s)

dom(s) = δ((y)t).

Similarly, δ((y)t)t−1 ⊆ δ(y) and δ((y)t) = δ((y)t)t−1t ⊆ (δ(y))t. It follows that

(δ(y))t = δ(yt). (10)

Hence

δ(((y1)t1 ∧ y2)t−1
1 ) = δ((y1)t1 ∧ y2)t−1

1

= (δ((y1)t1) ∩ δ(y2))t−1
1

= (δ(y1)t1 ∩ δ(y2))t−1
1

= (dom(t1)t1 ∩ dom(t2))t−1
1

= dom(t1) ∩ dom(t2)t−1
1

= dom(t1t2).

Next we prove that Q is a semigroup. It suffices to show that the multiplication is 
associative. Let (y1, t1), (y2, t2), (y3, t3) ∈ Q. Let

u = (((y1)t1 ∧ y2)t2 ∧ y3)t−1
2 and v = (y1)t1 ∧ ((y2)t2 ∧ y3)t−1

2 .

We must first show that u = v, which we do by showing u ≤ v and v ≤ u. To this end

u = (((y1)t1 ∧ y2)t2 ∧ y3)t−1
2 ≤ ((y2)t2 ∧ y3)t−1

2

and

u = (((y1)t1 ∧ y2)t2 ∧ y3)t−1
2 ≤ ((y1)t1 ∧ y2)t2t−1

2 = (y1)t1 ∧ y2 ≤ (y1)t1.
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Thus u ≤ v. To show v ≤ u, it is sufficient to show that (v)t2 ≤ (u)t2. We have

(v)t2 = ((y1)t1 ∧ ((y2)t2 ∧ y3)t−1
2 )t2 ≤ ((y1)t1 ∧ (y2)t2t−1

2 )t2 = ((y1)t1 ∧ y2)t2

and

(v)t2 = ((y1)t1 ∧ ((y2)t2 ∧ y3)t−1
2 )t2 ≤ ((y2)t2 ∧ y3)t−1

2 t2 = (y2)t2 ∧ y3.

Hence v ≤ u and u = v, as required. From the definition of the multiplication,

((y1, t1) · (y2, t2)) · (y3, t3) = (((y1)t1 ∧ y2)t−1
1 ), t1t2) · (y3, t3)

= ((((y1)t1 ∧ y2)t−1
1 )t1t2 ∧ y3)t−1

2 t−1
1 , t1t2t3)

= ((((y1)t1 ∧ y2)t2 ∧ y3)t−1
2 t−1

1 , t1t2t3)

((y1)t1 ∧ y2)t−1
1 t1 = (y1)t1 ∧ y2

= ((u)t−1
1 , t1t2t3)

= ((v)t−1
1 , t1t2t3)

= (((y1)t1 ∧ ((y2)t2 ∧ y3)t−1
2 )t−1

1 , t1t2t3)

= (y1, t1) · ((y2t2 ∧ y3)t−1
2 , t2t3)

= (y1, t1) · ((y2, t2) · (y3, t3)).

We conclude the proof by showing that Q is an inverse semigroup. We first show that 
Q is regular. Let (y, t) ∈ Q. We will show that (yt, t−1) ∈ Q, and that this is an inverse 
for (y, t) ∈ Q. Since (δ(y))t = δ(yt) by (10),

dom t−1 = (dom t)t = (δ(y))t = δ(yt).

Therefore (yt, t−1) ∈ Q. In addition,

(y, t) · ((y)t, t−1) · (y, t) = (((y)t ∧ (y)t)t−1, tt−1) · (y, t)
= ((y)tt−1, tt−1) · (y, t)
= (y, tt−1) · (y, t)
= (((y)tt−1 ∧ y)tt−1, tt−1t)

= (y, t),

and so Q is regular. It now suffices to show that the idempotents commute. If (y, t) ∈ Q

is an idempotent, then t ∈ E(T ). Conversely if e ∈ E(T ) then (y, e) · (y, e) = (((y)e ∧
y)e−1, e2) = (y, e). So E(Q) = {(y, e) ∈ Q | y ∈ 𝒴, e ∈ E(T )}. These elements commute:

(y1, e1) · (y2, e2) = (((y1)e1 ∧ y2)e−1
1 , e1e2) = (y1 ∧ y2, e1e2) = (y2, e2) · (y1, e1). □
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11.2. The proof of Theorem 11.3

For the remainder of this section, we suppose that S is a fixed inverse semigroup. The 
idea behind the proof of Theorem 11.3 is as follows. The semigroup S has a quotient by 
an idempotent-pure congruence that is an E-disjunctive inverse semigroup; see Section 9. 
By Lemma 9.4, an element s ∈ S is determined by its image in this quotient together with 
the idempotent ss−1. The set 𝒴 in the definition of Q(T,𝒴,𝒳 ) is the set of idempotents 
E(S) of S, and T is the quotient of S by its maximum idempotent-pure congruence ρ. 
We will prove that the function S → Q(T,𝒴,𝒳 ) defined by

s ↦→ (ss−1, s/ρ)

is an isomorphism for the correct choice of 𝒳 .
Roughly speaking, in order to capture the multiplication of S in the definition of 

Q(T,𝒴,𝒳 ), we need to be able to recover the idempotents (st)(st)−1 from the idempo
tents ss−1 and tt−1. This is where the action comes in. The action we define comes from 
the conjugation (inverse semigroup) action of S on E(S) which is defined as follows. We 
define α : E(S) × S → E(S) by

(e, s)α = s−1es and dom(α) = {(e, s) ∈ E(S) × S | e ≤ ss−1}. (11)

It is routine to verify that this is an inverse semigroup action. We also define ϕα : S →
IE(S) to be the homomorphism associated to α. In Lemma 11.7 we will show that T = S/ρ

has a preaction (Definition 10.2) on 𝒴 = E(S) (this is essentially the same idea as 
Proposition 2.11). Hence by Theorem 10.5 there will exist an inverse semigroup action 
of T on a poset 𝒳 containing 𝒴.

Definition 11.4. Let α be the action given in (11). We define a multiplication on the set 
dom(α) by

(e, s)(f, t) = (((e, s)α ∧ f, s−1)α, st).

This multiplication is well-defined as ((e, s)α∧f, s−1)α ≤ sfs−1 ≤ stt−1s−1 = (st)(st)−1. 
We do not assert that this multiplication is associative.

The natural magma homomorphism

π : dom(α) → S is defined by (e, s)π = s. (12)

We will show that a subset of dom(α) with the multiplication given in Definition 11.4 is 
a semigroup, by showing that the subset is (magma) isomorphic to a semigroup.
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Lemma 11.5. Let ψ : S → dom(α) be the map defined by

(s)ψ = (ss−1, s).

Then ψ is an injective magma homomorphism and im(ψ) ∼ = S.

Proof. Note that ψ is well-defined by the definition of the set dom(α).
Let s, t ∈ S. Then

(s)ψ (t)ψ = (ss−1, s)(tt−1, t)

= ((s−1ss−1s ∧ tt−1, s−1)α, st)

= ((s−1s ∧ tt−1, s−1)α, st)

= (ss−1stt−1s−1, st)

= (stt−1s−1, st)

= (st)ψ.

Since the homomorphism ψ ◦ π is the identity map on S, the restriction π|im(ψ) = ψ−1

is an isomorphism from a subsemigroup of dom(α) to S. □
We have not yet defined the poset 𝒳 which we will be using to define our Q-semigroup. 

However, the set of elements of the Q-semigroup does not depend on 𝒳 , only the multi
plication within the Q-semigroup. The next lemma shows that S is contained in the set 
of elements in the Q-semigroup we are in the process of defining.

Lemma 11.6. Let ρ be the syntactic congruence on S, and let ψρ : S → E(S) × S/ρ by

(s)ψρ = (ss−1, s/ρ).

Then ψρ is injective.

Proof. Let s, t ∈ S be such that (s)ψρ = (ss−1, s/ρ) = (tt−1, t/ρ) = (t)ψρ. In particular, 
ss−1 = tt−1 and so sRt. Since the quotient homomorphism from S to S/ρ is idempotent
pure, Lemma 9.4 implies that this homomorphism is injective on the R-classes of S. 
Hence s/ρ = t/ρ implies that s = t. □

We define

M = im(ψρ) = {(ss−1, s/ρ) : s ∈ S} ⊆ E(S) × S/ρ, (13)

and define multiplication on M such that ψρ : S → M is an isomorphism. If ψ : S →
im(ψ) ⊆ dom(α) is the (semigroup) isomorphism from Lemma 11.5 and π : dom(α) → S
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is from (12), then π|im(ψ)ψρ = ψ−1ψρ : im(ψ) → M is an isomorphism. If (ss−1, s) ∈
im(ψ), then

(ss−1, s)ψ−1ψρ = (s)ψρ = (ss−1, s/ρ).

If s, t ∈ S and e, f ∈ E(S) are such that (e, s/ρ), (f, t/ρ) ∈ M , then there is s0 ∈ s/ρ

such that (s0)ψρ = (s0s
−1
0 , s0/ρ) = (e, s/ρ). Since

(e, s/ρ)(f, t/ρ) = ((e, s)(f, t))ψ−1ψρ

= ((((e, s0)α ∧ f), s−1
0 )α, st)ψ−1ψρ

= ((((e, s0)α ∧ f), s−1
0 )α, st/ρ),

it follows that

(e, s/ρ)(f, t/ρ) = ((((e, s0)α ∧ f), s−1
0 )α, st/ρ). (14)

We will prove Theorem 11.3 by describing the multiplication of the given inverse semi
group S using only the E-disjunctive inverse semigroup S/ρ, the idempotents E(S), and 
an action of S/ρ on a poset. Since M is isomorphic to S, the above equation almost does 
this. The problem is that α is defined in terms of S, and not only in terms of S/ρ and 
E(S). We will show that S/ρ is sufficient to capture the needed information from this 
action.

Since the particular choice of representative of the classes in S/ρ is not important later, 
we denote S/ρ by T so that we may refer to the elements of T rather than choosing a 
representative for an element of S/ρ.

Lemma 11.7. If α : E(S) × S → E(S) is the action defined in (11), then the partial 
function q : E(S) × T → E(S) defined by

(e, t)q = (e, s)α

for all (e, t) ∈ E(S) × T such that there exists t′ ≤ t with s ∈ t′ is a preaction. In 
particular,

dom(q) = {(e, t) ∈ E(S) × S/ρ | ∃s ∈ t′ ≤ t with (e, s) ∈ dom(α)}.

Proof. We first show that q is well-defined. Let s1 ∈ t1 ≤ t ∈ T , let s2 ∈ t2 ≤ t ∈ T , and 
let (e, s1), (f, s2) ∈ dom(α). We will show that (e, s1)α ≤ (f, s2)α if and only if e ≤ f . 
This will not only show that q is well-defined (by considering the case when e = f) but 
will also show it satisfies Definition 10.2(1).

Since s1 ∈ t1 ≤ t and s2 ∈ t2 ≤ t, it follows that (s−1
1 s2/ρ) ≤ t−1t and s1s

−1
2 /ρ ≤ tt−1. 

Hence s−1
1 s2/ρ, s1s

−1
2 /ρ ∈ E(T ), and so, by Lallement’s Lemma, both s−1

1 s2/ρ and 
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s1s
−1
2 /ρ contain an idempotent. But ρ is idempotent-pure and so s−1

1 s2, s1s
−1
2 ∈ E(S). 

Thus s−1
1 s2 and s1s

−1
2 equal their inverses, that is,

s−1
1 s2 = s−1

2 s1 and s1s
−1
2 = s2s

−1
1 . (15)

Similarly s1s
−1
2 = s2s

−1
1 is an idempotent. For every s ∈ S, we define sα : E(S) → E(S), 

by (g)sα = (g, s)α = s−1gs for all g ∈ E(S). Note that dom(sα) is an order ideal. This 
notation coincides with the notation in Definition 10.2 although we have not yet shown 
that α is a preaction. We assumed at the start of the proof that (e, s1), (f, s2) ∈ dom(α)
and so (e, s1)α ∈ im(s1α) and e ∈ dom(s2α) since s1 ≤ s2 and e ≤ f . In particular, 
(e, s1)α ∈ dom(s1

−1
α

), and so (e, s1)αs1
−1
α

= (e)s1αs1
−1
α

= e. Since e ∈ dom(s2α), it 
follows that (e, s1)αs1

−1
α

∈ dom(s2α) and so (e, s1)α ∈ dom(s−1
1 s2

α
). Since s−1

1 s2 is an 

idempotent, (s−1
1 s2)α acts as the identity on every point in its domain, including (e, s1)α. 

In other words,

(e, s1)α = (e, s1s
−1
1 s2)α. (16)

By definition, (e, s1s
−1
1 s2)α = (e, s1s

−1
1 )α · s2α. Since s1s

−1
1 α

is the identity dom(s1α)
and e ∈ dom(s1α), it follows that

(e, s1s
−1
1 s2)α = (e)s1s

−1
1 s2

α
= (e)s1s

−1
1 α

◦ s2α = (e)s2α = (e, s2)α. (17)

Therefore if s1 ∈ t1 ≤ t ∈ T , s2 ∈ t2 ≤ t ∈ T , and (e, s1), (f, s2) ∈ dom(α), then

e ≤ f ⇒ e ≤ f and (e, s1)α = (e, s1s−1
1 s2)α = (e, s2)α by (16) and (17)

⇒ (e, s1)α = (e, s2)α ≤ (f, s2)α s2α is an order isomorphism and e ≤ f

⇒ (e, s1)α ≤ (f, s2)α

⇒ ((e, s1)α, s−1
2 )α ≤ ((f, s2)α, s−1

2 )α

⇒ e = (e, s1s−1
2 )α ≤ (f, s2s−1

2 )α = f s1s
−1
2 ∈ E(S) by (15) and e ∈ dom(s1s−1

2 α
)

⇒ e ≤ f.

Hence (e, s1)α ≤ (f, s2)α if and only if e ≤ f .
That Definition 10.2(2), (4) and (5) hold is clear. The remaining condition is condition 

(3). Suppose that t1, t2 ∈ T and (e)t1q = f and (f)t2q = g. We must show that (e)t1t2q =
g and (f)t−1

1 q
= e.

We first want to show that e ∈ dom(t1t2q). Since e ∈ dom(t1q), from the definition of 
q there exists s1 ∈ t′1 ≤ t1 such that (e, s1) ∈ dom(α). Similarly, there exists s2 ∈ t′2 ≤ t2
with (f, s2) ∈ dom(α). We want to show that there exists s3 ∈ t′3 ≤ t1t2 with (e, s3) ∈
dom(α).

Set s3 = s1s2. By assumption (e, s1), (f, s2) ∈ dom(α), and so (e, s1)α = (e)s1α =
(e, s1)α = (e, t1)q = f and, similarly, (f, s2)α = g. Thus, since α is an action, g =
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(f, s2)α = ((e, s1)α, s2)α = (e, s1s2)α. In particular, (e, s1s2) ∈ dom(α). Since s1 ∈ t′1 ≤
t1 and s2 ∈ t′2 ≤ t2, it follows that s1s2 ∈ t′1t

′
2 ≤ t1t2 and so

(e)t1t2q = (e, t1t2)q = (e, s1s2)α = (f, s2)α = g,

as required.
It remains to show that (f)t−1

1 q
= e. Again, we begin by showing that f ∈ dom(t−1

1 q
). 

Since (e, s1) ∈ dom(α), there exists s1 ∈ t′1 ≤ t1 such that (e, s1) ∈ dom(α). Since α is 
an inverse semigroup action, ((e)s1α, s

−1
1 ) ∈ dom(α). As we showed earlier, (e)s1α = f , 

and so (f, s−1
1 ) ∈ dom(α) and (f, t−1

1 ) ∈ dom(q). Thus (f)t−1
1 q

= e, as required. □
We can now prove Theorem 11.3.

Theorem 11.3. Every inverse semigroup S is isomorphic to some Q(T,𝒴,𝒳 ) from Defi
nition 11.1, where T is the maximum E-disjunctive homomorphic image of S, and 𝒴 is 
the semilattice of idempotents of S.

Proof. Let S be any inverse semigroup; let 𝒴 = E(S); let ρ be the syntactic congruence 
on S; let T = S/ρ; and let ϕρ : S → T be the natural homomorphism defined by (s)ϕρ =
s/ρ. We also recall the following:

• let α : E(S)× S → E(S) be the inverse semigroup action defined by (e, s)α = s−1es

(see (11)) for all (e, s) ∈ E(S) × S such that e ≤ ss−1;
• let π : dom(α) → S be defined by (e, s)π = s (see (12));
• let ψ : S → dom(α) be defined by (s)ψ = (ss−1, s) (Lemma 11.5);
• let M = {(ss−1, s/ρ) ∈ E(S) × T | s ∈ S} as defined in (13);
• let q : E(S) × T → T be the preaction defined in Lemma 11.7;
• let 𝒳 be the poset defined in Theorem 10.5 (with respect to the preaction q) that 

contains 𝒴;
• let β : 𝒳 × S → 𝒳 be the action given in Theorem 10.5 such that β restricted to 

(𝒴 × S) ∩ (𝒴)β−1 equals q.

We will verify that T , 𝒴, and 𝒳 satisfy the conditions in Definition 11.1. Firstly, by 
Theorem 10.5, β is an inverse semigroup action of T on 𝒳 by partial order isomorphisms, 
𝒴 is a meet subsemilattice, and order ideal, of 𝒳 .

(1) Let t ∈ T be arbitrary. We must show that dom tβ is an order ideal of 𝒳 . We 
can assume without loss of generality that t is an idempotent because dom(tβ) =
dom(tt−1

β) for all t ∈ T . Let a ∈ 𝒳 and b ∈ dom tβ ⊆ 𝒳 be such that a ≤ b. By 
Theorem 10.5(3), there exists s ∈ T 1 such that (a, s)β, (b, s)β ∈ 𝒴 and (a, s)β ≤
(b, s)β. In other words, (a)sβ ≤ (b)sβ . Since dom(s−1tsq) is an order ideal in 𝒴 (by 
Definition 10.2(1)) and 𝒴 is an order ideal in 𝒳 , dom(s−1tsq)∩𝒴 is an order ideal in 
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𝒳 . By assumption t is an idempotent, and so s−1ts is an idempotent also. It follows 
that dom(s−1tβ) ∩ 𝒴 = dom(s−1tsβ) ∩ 𝒴 = dom(s−1tsq) ∩ 𝒴 is an order ideal of 𝒳 .

By assumption b ∈ dom tβ and so (b)sβ ∈ dom(s−1tβ) ∩ 𝒴. Finally, since 
dom(s−1tβ) ∩ 𝒴 is an order ideal, (a)sβ ∈ dom(s−1tβ), and so a ∈ dom(tβ), as 
required.

(2) Firstly, for all (y, t) ∈ 𝒴 × T , the following hold:

y ∈ dom(tβ) ⇐⇒ y ∈ dom(tt−1
β)

⇐⇒ y ∈ dom(tt−1
q)

⇐⇒ there exists e ∈ S such that e/ρ ≤ tt−1 and y ≤ e

⇐⇒ y/ρ ≤ tt−1.

(18)

So if y ∈ 𝒴, then setting t = y/ρ ∈ T and repeatedly applying (18) we obtain

δ(y) = dom(tβ |𝒴) = {z ∈ 𝒴 | z/ρ ≤ tt−1}
=

⋂︂
{dom(t1β |𝒴) | t1 ∈ T such that y/ρ ≤ t1t

−1
1 }

=
⋂︂

{dom(t1β |𝒴) | t1 ∈ T such that y ∈ dom(t1β |𝒴)}.

(3) We must show that for all x ∈ 𝒳 , there is t ∈ T such that (x, t)β ∈ 𝒴. This is implied 
by Theorem 10.5(3).

Since S and M are isomorphic, by the definition of the multiplication of M , it suffices 
to show that M and Q(T,𝒴,𝒳 ) coincide (as semigroups).

The following holds:

Q(T,𝒴,𝒳 ) =
{︂

(y, t) ∈ 𝒴 × T 
⃓⃓⃓
dom(tβ) = δ(y) = dom(y/ρ

β
|𝒴), (y, t)β ∈ 𝒴

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
dom(s/ρ

β
) ∩ 𝒴 = dom(y/ρ

β
) ∩ 𝒴, (y, s/ρ)β ∈ 𝒴

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
dom(ss−1/ρ

β
) ∩ 𝒴 = dom(y/ρ

β
) ∩ 𝒴, (y, s/ρ)β ∈ 𝒴

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓ ⋃︁
(ss−1/ρ) ↓= ⋃︁

(y/ρ) ↓⊆ 𝒴, (y, s/ρ)β ∈ 𝒴
}︂

(by (18))

=
{︂

(y, s/ρ) ∈ 𝒴 × T 
⃓⃓⃓
(ss−1/ρ) ↓= (y/ρ) ↓, (y, s/ρ)β ∈ 𝒴

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
(ss−1, y) ∈ ρ, (y, s/ρ)β ∈ 𝒴

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
(ss−1, y) ∈ ρ, (y, s/ρ)q ∈ 𝒴

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
(ss−1, y) ∈ ρ, (y, s/ρ) ∈ dom(q)

}︂
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=
{︂

(y, s/ρ) ∈ 𝒴 × T 
⃓⃓⃓
(ss−1, y) ∈ ρ,∃a ∈ S with a/ρ ≤ s/ρ and y ≤ aa−1

}︂
(def. of q).

If (y, s′/ρ) ∈ Q(T,𝒴,𝒳 ), then there exists s ∈ s′/ρ such that (ss−1, y) ∈ ρ and there 
exists a ∈ S with a/ρ ≤ s/ρ and y ≤ aa−1. Thus ss−1/ρ = y/ρ ≤ aa−1/ρ. Moreover

ss−1/ρ ≤ aa−1/ρ ⇐⇒ ss−1a/ρ ≤ aa−1a/ρ ⇐⇒ s/ρ ≤ a/ρ ⇐⇒ s/ρ = a/ρ.

Thus

Q(T,𝒴,𝒳 ) =
{︂

(y, s/ρ) ∈ 𝒴 × T 
⃓⃓⃓
(ss−1, y) ∈ ρ,∃a ∈ S with a/ρ = s/ρ and y ≤ aa−1

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
(ss−1, y) ∈ ρ, and y ≤ ss−1

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
(ss−1, y) ∈ ρ, y ≤ ss−1

}︂
=

{︂
(y, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
y = ss−1

}︂
=

{︂
(ss−1, s/ρ) ∈ 𝒴 × T 

⃓⃓⃓
s ∈ S

}︂
= M.

We have shown that M and Q(T,𝒴,𝒳 ) are equal as sets. That their multiplications also 
coincide is precisely (14), and so the proof is complete. □
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