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during the COVID-19 pandemic.

Design: Qualitative investigation using Machine-Assisted
Topic Analysis (MATA) of free-text data collected from a
prospective cohort.

Methods: Free-text survey data (2177 responses from
762 participants) of influences on health behaviours and
wellbeing were collected among UK participants recruited
online, using Qualtrics at 3, 6, 12 and 24 months after the
COVID-19 pandemic started. MATA, which employs
structural topic modelling (STM), was used (in R) to
discern latent topics within the responses. Two researchers
independently labelled topics and collaboratively organized
them into themes, with ‘sense checking’ from two additional
researchers. Plots and rankings were generated, showing
change in topic prevalence by time. Total researcher time to
complete analysis was collated.

Results: Fifteen STM-generated topics were labelled and
integrated into six themes: the influences of and impacts
on (1) health behaviours, (2) physical health (3) mood and
(4) how these interacted, partly moderated by (5) external
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influences of control and (6) reflections on wellbeing and
personal growth. Topic prevalence varied meaningfully
over time, aligning with changes in the pandemic context.
Themes were generated (excluding write-up) with 20h
combined researcher time.

Conclusions: MATA shows promise as a resource-saving
method for thematic analysis of large qualitative datasets
whilst maintaining researcher control and insight. Findings
show the interconnection between health behaviours,
physical health and wellbeing over the pandemic, and the
influence of control and reflective processes.

KEYWORDS
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Statement of contribution

What is already known on this subject?

* Al is increasingly being used to analyse qualitative data to reduce the resources and time
required for manual analysis of large qualitative data sets.

* Current methods of Al-assisted analysis have strengths and weaknesses, with approaches
that allocate full control to the Al having only moderate consistency with researchers.

* C-19 pandemic research lacks qualitative/people generated perceptions of impacts over time.

What does this study add?

* MATA provides a hybrid machine and human analysis approach which maintains researcher
control over thematic generation and interpretation.

* Findings identify key self-reported factors shaping health behaviours, mood and wellbeing
during the COVID-19 pandemic using open-ended responses, capturing lived experiences
and a more granular view of pandemic impact.

* The prevalence of person-generated factors shaping health behaviours, mood and wellbeing
over a 2-year period from the start of the C-19 pandemic.

BACKGROUND

Qualitative research is an established mainstay of psychological enquiry (Madill & Gough, 2008) and
health research (Pope & Mays, 1995). Qualitative methodologies provide critical tools for investigating
a range of ‘how and why’ research questions, many of which cannot be adequately answered using
quantitative methodologies (Pope & Mays, 1995). In recent decades, technological advances have
benefited quantitative enquiry and analysis substantially through improved software, processing
power and modelling capability, enabling increasingly large and complex data sets to be interrogated.
However, such technological advances have benefited qualitative research methods much less. While
computer-assisted qualitative data analysis software (CAQDAS) has existed for many years, ultimately
qualitative analysis is undertaken manually, which is considerably time- and resource-intensive (Nevedal
et al., 2021).
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Health care data is one of the fastest growing sources of data across all industries (Reinsel
et al., 2018) and increasingly this includes qualitative data. Qualitative data can come from a variety
of sources in addition to deliberate qualitative investigation, including health care records, health
care service and technology survey data, patient recorded data, social media, etc. Furthermore, gen-
erative Artificial Intelligence (AI) agents or ‘chatbots’ have demonstrated the ability to undertake
qualitative interviews using open-ended questions via a digital interface (Juraimi et al., 2024). The
scalability potential of using AT to collect qualitative data, alongside the large amounts of qualitative
data being generated by health care services and other sources, highlights the increasing need to
manage large qualitative datasets.

Large qualitative datasets are sometimes referred to as ‘Big Qual’ and have been defined as datasets
that include data from more than 100 participants (Brower et al., 2019) or simply more qualitative data
that an individual or small team can feasibly analyse manually (Weller et al., 2023). While there are
epistemological questions about if and when such large datasets are required to adequately answer qual-
itative research questions (Vasileiou et al., 2018), Big Qual datasets are growing in number and volume,
and will increasingly become a valuable source of insight to ultimately help improve health and health-
care. However, as it is not feasible to analyse Big Qual using manual analysis approaches, new analysis
methods are needed (Weller et al., 2023).

Recent advances in the use of Al provide opportunities for enhancing the analysis of large quali-
tative datasets. Approaches, such as topic modelling (a type of natural language processing) (Leeson
et al., 2019), supervised text classification (Smith & Tissing, 2018) and large language models (LL.Ms)
(Prescott etal., 2024) have been investigated for undertaking or supporting qualitative analysis. Evidence
to date indicates that the use of AT tools improves the efficiency and reduces the resource requirements
for qualitative analysis compared to manual approaches (Cheligeer et al., 2022; Prescott et al., 2024;
Towler et al., 2023). However, an important dimension is the extent to which the AT has full control of
the final thematic or descriptive structure, and thus its reliability and authenticity, or is instead used for
analysis augmentation.

Large language models (ILLLMs) show promise in qualitative analysis by identifying novel themes and
theoretical links that human researchers may not identify (Hamilton et al., 2023; Wachinger et al., 2024).
However, concerns about bias and low consistency with researchers suggest more research is needed
before granting them full control (Hamilton et al., 2023; Kon et al., 2024; Peterson, 2024; Prescott
et al.,, 2024). The use of Al to augment human-directed analysis, rather than replace it, is an alternative
that may circumvent some of the current limitations with LL.M-controlled qualitative analysis. Natural
language processing (NLP) enhances the scalability and efficiency of text analysis, although on its own
it lacks the depth and recognition of nuance and cultural contexts that humans bring to qualitative anal-
ysis (Weller et al., 2023). Using NLP to support, rather than control, qualitative analysis enables rapid
Al-identified concepts but with a layer of verification and ultimate control from the researcher.

Machine-Assisted Topic Analysis (MATA) (Bondaronek et al., 2023; Towler et al., 2023) combines
computational analysis with the expertise and insights of experienced qualitative researchers, leveraging
both artificial and human intelligence to handle large volumes of text data. MATA employs structural
topic model (STM), as proposed by Roberts et al. (2019), which discerns latent topics within texts. STM
operates under the premise that documents are composites of topics, and it aids in extracting and delin-
eating principal themes within a text corpus, mapping them onto individual documents. This method is
particularly useful for systematically analysing extensive volumes of unstructured text.

One of the key strengths of STM lies in its incorporation of document-level metadata into the topic
modelling process (Roberts et al., 2019). This metadata can range from a document's creation date to
the characteristics of its source (e.g., participants) and acts as covariates in the model. This integration
allows for a nuanced estimation of the relationship between such variables and the discussed topics,
enhancing the depth of analysis. It affects both the frequency of discussion of particular topics and the
overall interpretive quality of the analysis. STM is instrumental for qualitative researchers, facilitating
the identification of patterns and assisting in deriving deeper insights, interpreting and summarizing
the topics. The output of STM is a series of topics that identify key patterns and categories from large

SUORIPUOD PUe SW 1 8U3 885 *[G202/TT/0T] Lo Areiqiauliuo As|im ‘e1iBuy se3 JO AiseAN Aq 2T00L dula/TTTT 0T/10p w00 | Aeld 1 pui|uo gnuyoAsdsday/sdny wouy papeojumod ‘€ ‘SZ0e ‘L828rY0Z

fo 1M

85U8017 SUOWWIOD aAIEa.D) 8|qeoljdde ay) Aq peusenob 8. sSoiLe VO ‘88N JO S9INJ 10} ARiq178UIUO A8]IM U



4 of 25 | WARD ET AL.

datasets which can be interpreted and understood in context by the researchers to enable them to gen-
erate overarching themes from the data.

MATA was developed in response to the increasing need for rapid analysis of large quantities
of free-text data, a challenge that became especially evident during the COVID-19 pandemic. For
example, datasets like the UK NHS Test and Trace data (Bondaronek et al., 2023) where rapid ac-
tionable insights were crucial to improve the management of the pandemic. COVID-19 impacts over
time have been summarized quantitatively by cohort studies, including identifying health trends
such as changes to health behaviours (Anyanwu et al., 2022; Bann et al., 2021; Herle et al., 2021),
impacts of long COVID (Bowyer et al., 2023), initial increased mental health issues (Saunders
et al,, 2024) and widening health inequalities (Bann et al., 2021; British Medical Association, 2024;
Finch & Tinson, 2022). However, there is a lack of examination of longitudinal qualitative cohort
data, which could serve to contextualize quantitative cohort findings, provide additional insights
and individual-centred perspectives on pandemic impacts (Pope & Mays, 1995). One such dataset
is the C-19 Health Behaviour and Wellbeing Daily Tracker Study (Naughton et al., 2021). This
study investigated how the pandemic affected health behaviour and wellbeing/mental health over
time and included free-text questions which hitherto were not able to be analysed due to resource
limitations.

1. This paper has two parallel aims. Firstly, it aims to describe the process of applying MATA
for analysing qualitative free-text data in a large longitudinal dataset. Secondly, it describes the
application of MATA to answer the question of which factors were self-reported to influence
health behaviours, mood and wellbeing over a two-year period since the COVID-19 pandemic
started, among participants of the C-19 Health Behaviour and Wellbeing Daily Tracker Study
(Naughton et al., 2021). This second aim serves as both a demonstration of the method and
an investigation into this under-investigated research question. Objectives relating to this second
aim are: Explore factors (as thematic topics), reported in free-text responses at 3, 6, 12 and
24months follow-up, that are perceived to influence health behaviours, mood and wellbeing.

2. Explore the prevalence of identified factors at each follow-up timepoint and change in prevalence over
time.

METHODS
Design and participants

Qualitative investigation of free-text data collected in follow-up surveys from a prospective cohort of
UK residents recruited in April 2020.

Participants were 18years and above, living in the United Kingdom, with access to a smartphone.
Participants were recruited online and were purposively sought to include people with a high-risk phys-
ical condition for COVID-19 (in line with UK national definitions in 2020), those living in an area of
high deprivation and those with a self-reported mental health issue. Recruitment was via social media
and targeted to vulnerable groups (e.g., women's groups, mental health support groups).

Procedure

Once enrolled and after completing the baseline questionnaire and a 12-week measurement period
of daily ecological momentary assessments (Naughton et al., 2021), all participants were invited to
complete follow-up surveys at 3, 6, 12 and 24 months post-baseline. Surveys were hosted on Qualtrics
XM software. These online surveys were prompted by text message, with several reminders and collected
data on COVID-19, health behaviour and wellbeing /mental health-related measures. For further details
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about the parent study, see the project Open Science Framework page (https://osf.io/dm853/) and the
wave 1 findings article (Naughton et al., 2021).

At the end of each follow-up survey, participants were invited to answer a free-text question
inviting them to ‘Please... tell us what factors have influenced your health behaviours, mood and
sense of wellbeing over the last [3/12] months’. The 3, 6 and 12month sutvey enquired about the
last 3months and the 24 month survey about the last 12 months. The responses to this free-text data
are the focus of this article. The follow-up surveys were conducted at four key timepoints over a
21-month period during the COVID-19 pandemic. The 3-month survey was collected in July 2020,
when England was beginning to emerge from the first national lockdown. The 6-month survey was
collected in October 2020, as COVID-19 cases were rising and local tiered restrictions were intro-
duced. The 12-month survey was collected in April 2021, shortly after England had exited a second
lengthy national lockdown. Finally, the 24-month survey was collected in April 2022, following
gradual lifting of all remaining restrictions.

Machine-assisted topic analysis (MATA)

Structured data, comprising participant identifier, timepoint, age, gender, deprivation, COVID-19
risk factors and the prevalence of mental health issues, were included in the models as covariates to
account for their potential influence on the outcomes. These variables provided a foundation for the
analysis, ensuring that key demographic, socioeconomic and health-related factors were considered
systematically.

Data pre-processing was conducted using R (version 3.5.2) and included the following steps:

1. Cleaning free-text responses: Free-text data were handled using a combination of base R functions
and the quanteda (version 2.0.1) and STM (version 1.3.3) packages. Initial cleaning involved
removing punctuation, symbols and numbers from the text, ensuring consistency and preparing
it for further processing,

2. Removing incomplete or redundant data: Observations containing missing values or duplicate entries
were identified and removed to maintain the integrity of the dataset.

3. Tokenization of text: The cleaned free-text responses were converted into tokens—individual
words—using the quanteda package. Tokenization facilitated the transformation of textual data into
a structured format suitable for analysis.

4. Eliminating stop words: Commonly used words with minimal analytical value, such as ‘and’ or ‘the’,
were removed to focus on more meaningful content.

5. Stemming tokens: Words were reduced to their root forms through a process called stemming. This
step acted as a normalization process, reducing variability in the text and decreasing the size of the
dictionary.

Structural topic modelling of the free-text data

We employed the STM as our topic modelling method (Towler et al., 2023). Diagnostic analysis was
conducted prior to running the models to identify the optimal number of topics. This process involved
balancing semantic coherence and exclusivity, guided by relevant metrics and the specific aims of the
analysis.

To identify the best model configuration, we tested models with 5 to 40 topics, incorporating the
structured data reported above as covariates. We evaluated the models based on their semantic co-
herence scores (Mimno et al., 2011) and residuals. Following a visual examination of diagnostic plots
(Appendix S1), we determined that a model with 15 topics was optimal for the analysis. To facilitate
qualitative analysis, we extracted 20 representative ‘quotes’ for each topic from the dataset.
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Researcher interpretation of topics and generation of themes

The aim of the researcher-led qualitative analysis was to interpret the output, agree upon narrative labels
for the topics and organize topics into a broader thematic structure, identifying factors as outlined in
Objective #1.

We analysed the STM in five stages:

1. EW and FN independently categorized the machine output (in Excel) by writing short de-
scriptive notes for each quote within a topic and then reviewing the notes for similarities of
meaning to identify topic meaning.

2. EW and FN then met to compare their independent interpretation of machine output, resolve any
disagreements in the interpretation through discussion and agree the draft MATA code labels for each
topic.

3. EW and FN worked together to manually organize the MATA code labels into broader themes.

4. PB and SH separately reviewed the text analysis and labels to ‘sense check’ the interpretation. EW, FN,
PB and SH met to discuss the MATA code labels and broader theme labels and structure, agreeing on
a consensus of interpretation through collaborative discussion.

5. EW conducted an analytical write-up of the qualitative analysis which consisted of re-reviewing free-
text responses provided in each topic in the context of the researchers' interpretation of topic meaning,
The write-up was reviewed by the other researchers. As is typical in qualitative research, this stage was
an iterative process and resulted in some changes to label headings and thematic structure. Changes
were agreed by the team and summarized in the findings section.

Prevalence of topics by timepoint

To meet objective #2, exploratory analysis was undertaken on the prevalence of topics at each follow-up
timepoint and change in prevalence over time. The prevalence of each user response to each topic was
averaged to calculate a mean topic weighting for each follow-up timepoint (3, 6, 12 and 24 months; the
higher the mean weighting score indicating greater prevalence at that time). How the prevalence of
topics changed over time in comparison to each other was explored by plotting topic prevalence at each
time point using line graphs. Prevalence scores were converted to rankings for each timepoint for ease
of interpretation (1 =most prevalent through to 15 =least prevalent).

FINDINGS

The characteristics of the sample are shown in Table 1.

Total researcher time to complete analysis

Stages 1—4 of the researcher interpretation took approximately 20h of combined researcher time, with
Stage 5 (write-up) taking approximately 28 h.

Self-reported influential factors during the pandemic

The final thematic structure of the researcher interpretation of the 15 machine-generated topics from

free-text responses is shown in Figure 1, showing thematic clusters of topics resulting in six broader
themes. Table 2 defines each topic and provides example quotations, summarizing the core meaning of
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TABLE 1 Baseline sample description (IN=762).

Characteristic
Age category (years)
18-24
25-44
45-064
65+
Gender
Male
Female
Ethnicity
White
Other
Number of adults in household
1 (living alone)
2
3
4+
Keyworker
Yes
No/not working
Employment status
Employed/self-employed/freelance
Not working (student/home carer/retired)
Never worked ot long-term unemployed
Unemployed and looking for work (not due to COVID-19)
Out of work/furloughed/leave of absence (due to COVID-19)

Unable to work because of sickness or disability

Index of Multiple Deprivation (IMD) quintile (1 =most deprived)

1
2
3
4
5
COVID-19 at risk health condition
Very high-risk health condition
Increased risk health condition
No increased risk health condition
Self-reported mental health issue
Yes
No

"Percentages may not add up to 100 due to rounding.

"Due to missing data, totals may not add to 1044.

“Combined using IMD decile scores from England (2019), Northern Ireland (2017), Scotland (2020) and Wales (2019).

%*

7.6
32.4
46.0
14.0

25.4
74.6

96.3
3.7

21.2
57.8
13.7

7.5

26.8
73.2

60.2
23.9

1.6
10.6
3.4

11.4
15.8
25.0
22.6
25.3

7.2
24.5
68.2

5.8
94.2

191
562

731
28

161
439
104

56

459
182

12
81
26

118
187
169
189

55
187
520

44
718
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Salutogenesis (11)
Loss or connection (7)

Routine and habits (3)
Frustration with politics (12)

Physical activity (8)
Hope, optimism and
fulfilment (9)

Health behaviour
constraints (5)

Physical health Factors influencing mood,
symptoms (4) S oo health behaviours and Risk and restrictions (6)
Physi |t . Constraints and
i sense of wellbeing
— control
Chronicill health (13) Personal autonomy (14)

Change, transition and
uncertainty (10)
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Interactions
between Factors (1)

FIGURE 1 Thematic map of topic labels clustered into broader themes.

each topic and outlining what differentiates the topics, rather than an attempt to describe everything
within the topic.

Main theme narrative meaning and topic prevalence

Six main themes were manually derived from the analysis of the 15 topics and are narratively summarized
below with topic labels in italics and illustrative quotes. Topic prevalence in relation to each timepoint is
discussed below, structured by main themes, and shown in Table 3 and Figures 2—0.

Health behaviours

This theme relates to participants' identification of healthy behaviours perceived as important to their
sense of wellbeing, promoting salutogenesis, (particulatly physical activity, but also behaviours such as sleep,
healthy eating, hobbies and social connection) and their ability to establish or recalibrate plans, routines
and habits to support the behaviours. Barriers to undertaking health behaviours included low mood,
physical health issues, external constraints (e.g., pandemic measures), while facilitators included time,
resources, access to outdoor spaces and dog ownership. Aspects of this theme are illustrated in the quote
below:

Being on reduced hours at work, and being static and not checking tickets, not walking
through the train, meant I needed to up my exercise to help lose weight. The walks/jogs
have made me happier, healthier and done wonders for me mentally. Only downside not
being able to see my 2 teenage daughters, but we have talked and spoke online every few
days and every day I get closer to seeing them.

(Routines and Habits)

Salutogensis was the most prevalent topic at 3 and 12 months (Table 3, Figure 2), just after the strictest
lockdown periods. Routines and habits showed relatively consistent prevalence across the time points; 5th
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=== Salutogenesis
0.14 == Routine and habits
=== Physical activity
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FIGURE 2 Health behaviour broad theme topic mean score by timepoint.

=== Physical health symptoms
we Chronic ill health

150

125
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Topic Mean Score

\

.075
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3 months 6 months 12 months 24 months

Timepoint
FIGURE 3 Physical health broad theme topic mean scores by timepoint.
most prevalent topic at 6 and 12months and 7th at 3 and 24 months. Physical activity was the 14th most

prevalent topic at 3months but had increased in prevalence at the other time points; 9th, 7th and 11th,
respectively.
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e Stress

010 == 0SS OF cONNection

=== Frustration with politics

=== Hope, optimism and fulfilment
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0.04
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FIGURE 4 Mental state and affect broad theme topic mean scores by timepoint.
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FIGURE 5 Interactions between factors topic mean score by timepoint.

Physical health

Participants described physical health symptoms (e.g., musculoskeletal, respiratory) or chronic ill health, with
long COVID featuring in many responses. Physical health was described as impacting mental health
and ability to undertake activities, including health behaviours. Problems accessing health care and de-
lays to treatment were a source of frustration, with some participants describing turning to the private
sector as a result. This sense of frustration is evident in this quote:
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=== Health behaviour constraints
10 === Risk and restrictions
=== Personal autonomy

Change, transition and
uncertainty
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FIGURE 6 Constraints and control broad theme topic mean scotes by timepoint.

Long waiting list for apparently urgent surgery (15 months so far) has increased my de-
pression as well as my chronic pain, as well as exacerbating my other chronic illnesses
(fibromyalgia, CFS, IBS, migraines). Worsening health has led to increased need for rest
and time in bed, missing out on lots of things- including the ability to work, affecting my
wages, increasing my anxiety as I am struggling to pay bills. All because of the length of
the waiting list for gynaecology surgery.

(Chronic ill health)

Twenty-four months post-lockdown, both of the topics within this theme demonstrated the high-
est prevalence of all topics (Table 3, Figure 3). The prevalence of physical health symptoms rose sharply at
each timepoint (ranked 12th/10th/6th/2nd respectively), and similatly chronic ill health started as 12th
most prevalent at 3months, then rose sharply to 2nd (6 and 12months) and then 1st (24 months) most
prevalent.

Mental state and affect

Participants reported influences on mental states. External influences included s#ress-filled environ-
ments, predominantly related to managing work and family, which resulted in feelings of exhaustion,
failure and guilt. Lockdown measures preventing social connection and experiencing bereavement
were described as generating feelings of /oss and grief. Perceived governmental misgovernance and
incompetencies influenced feelings of frustration with politics and anxiety about the future:

The useless way this government has handled this pandemic, the useless track and trace
system which is the key to getting us out of this clusterf*ck, and the billions of billions of
handouts to cronies, impact on my mental health, as do the treatment of refugees, BLM
issues. Hard to stay positive.

(Frustration with politics)
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Positive influences on mood included easing of pandemic measures, vaccinations and chang-
ing seasons/weather, which were described as generating feelings of hope, optinism and fulfilment.
Participants also discussed self-directed influences such as support seeking and engaging in health
behaviours.

As shown on Table 3 and Figure 4, stress was among the top-third most prevalent topics at all
timepoints, with a slight reduction in prevalence over time (2nd/3rd/3rd/5th respectively). Loss
and connection was the 5th most prevalent at 3 months and then fluctuated between the bottom and
middle-third at the other timepoints (13th/8th/10th respectively). Frustration with politics was the 4th
most prevalent topic at 3 months, then was most prevalent at 6 months before dropping to 11th most
prevalent at 12 months and then back up to 4th at 24 months. Hope, optinzism and fulfilment was the least
prevalent topic at 3months and then remained in the bottom-third of topics for the other timepoints
(12th/14th/13th, respectively).

Interactions between factors

Interactions between factors is a main theme consisting of a standalone topic. Participants explicitly reported
interactions between all or some of the factors identified in the above three themes. Interactions
between health behaviours, physical health and mental state, modified by external constraints, could
have positive, negative or mixed impacts. For example, a common mixed impact was improved physical
health but increased COVID anxiety because of engagement in outdoor physical activity instigated by
pandemic measures easing. The quote below is an example of a feedback loop showing the positive
impact of treatment on mood which enabled healthy behaviours which further improved mood:

I started medication and therapy for my anxiety and depression episode which started in
the summer. Since then, I've felt more motivated to look after my health (diet and exercise)
and have been feeling more optimistic about the future. I've been feeling much less anx-
ious on a daily basis.

Table 3 and Figure 5 show that the interactions between factors topic increased in prevalence over the
study period. It moved from 9th most prevalent at 3months to 6th at 6 months, 4th at 12months and
3rd at 24 months.

Constraints and control

Participants reported influences on their perceived sense of control over personal antonomy, ability to under-
take health behavionrs, and change, transition or uncertainty relating to work or personal circumstances. Constraints
included limiting health conditions, lack of time, pandemic measures and COVID risk and restrictions.
Regarding perceived COVID risk, prevalence of COVID ‘rule-breakers’, exposure to negative media re-
porting, work practices increasing COVID exposure and perceived government mishandling increased
the perception of risk, resulting in COVID anxiety. The easing of pandemic measures, online communi-
cation and accessing support/treatment was discussed as increasing one's sense of control. Paradoxically,
constraining one's freedom was also seen as a way to gain control amidst the uncertainty of the pandemic:

Sense of safety for not having to leave the house every day; avoiding public crowds or busy
places.
(Risks and restrictions)

Personal antonomy reduced in prevalence over time from 3rd most prevalent at 3 months, then 8th at
6 months, 13th at 12 months and least prevalent (15th) at 24 months (Table 3, Figure 6). Risk and restrictions
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wete consistently in the middle-third most prevalent topics across timepoints (10th/7th/9th/9th re-
spectively). Health behaviour constraints were consistently in the bottom-third most prevalent topics
(13th/14th/12th/12th respectively). Change, transition and uncertainty were also relatively consistent over
time, ranking between 8th to 11th most prevalent (8th/11th/10th/8th respectively).

Reflections on wellbeing and personal growth

Reflections on wellbeing and personal growth is a main theme consisting of a standalone topic. Some participants
reported that the pandemic was a quieter, less demanding time that allowed for personal growth:

I've LOVED the lockdown. It's been enormously enjoyable and I rather miss it now it's over.
I've loved the quietness, the peace, the absence of annoying things like sport, trashy T'V stuff
and big events. I've loved being free from the ‘let's go out, meet friends and have fun’ sort of
thing that happens in life. I've loved the absence of traffic, how stress-free shopping has been.
How much calmer and more relaxed everyone else has been. I've been amazingly busier than
ever with my own interests. I've had a sense of fulfilment and achievement from all that.

Some participants discussed the strengthening of relationships, fostering community, encouraging
hobbies and starting businesses. Participants reflected on life's priorities, embracing simplicity and de-
veloping gratitude. Barriers to reflection and personal growth (such as time) were also discussed by
some.

At 3months, this topic was the 11th most prevalent and for the other timepoints prevalence de-
creased to 15th at 6 and 12months and 14th at 24 months (Table 3, Figure 7).

DISCUSSION

MATA uses machine learning to identify patterns within large textual datasets, grouping data into
topics, which are subsequently interpreted for meaning by researchers. Rather than a ‘human in the
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.039

3 months 6 months 12 months 24 months

Timepoint

FIGURE 7 Reflections on wellbeing and personal growth topic mean score by timepoint.
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loop’ approach, MATA facilitates a ‘human in control’ approach over the analytic process, using Al to
enhance efficiency while preserving the ‘qualities’ (e.g., depth and contextual understanding) essential
to qualitative research. This papet's first aim was to describe the process of applying MATA to qualita-
tive free-text data, collected as part of the C-19 Health Behaviour and Wellbeing Daily Tracker Study
(Naughton et al., 2021). MATA was an efficient approach to analyse the large qualitative dataset. All 15
topics were able to be interpreted by the research team, reinforcing this number of topics as optimal,
whereas a previous study using MATA generated ‘non-sense topics’, which researchers were unable to
interpret meaning (Towler et al., 2023).

As with previous studies employing MATA (Bondaronek et al., 2023; Towler et al., 2023), researcher
time was considerably reduced, especially relating to the coding, theme generation and conceptualiza-
tion stages of thematic analysis (Braun & Clarke, 2006). The reduction in time directly resulted from
researchers having to read and interpret only 300 ‘best fit’ free-text responses (20 per topic), as opposed
to all 2172 responses. In addition, the machine generation of the 15 topics meant that the researchers
bypassed the time-consuming inductive coding stage of manual thematic analysis and instead under-
took a quicker process of ‘reverse coding’ to interpret the conceptual meaning of topics (Stage 1 in
our procedure). The time taken to complete the analytic write-up after theme generation (Stage 5 in
our procedure), which was conducted by a researcher without machine input, was not reduced and was
comparable to the time usually taken in manual qualitative analysis. This stage, however, was partic-
ularly important to the interpretation process for this study, given the machine rather than researcher
generated the initial topics. It allowed for researchers to check for contextual accuracy, investigate the
deeper meaning of the topics and differences between them and develop a coherent narrative about the
themes using example data.

The use of Al for qualitative analysis is increasing and this can create risks. One example risk is the
quantification of qualitative data. This could risk oversimplifying findings by overlooking outliers, nu-
anced responses and systemic influences such as broader social determinants. Balancing efficiency with
depth and maintaining contextual understanding remains a critical challenge. We argue that MATA
may help to mitigate concerns about the quality of Al-driven models in analysing participants' experi-
ences while maintaining the depth and contextual understanding associated with qualitative research, as
the process of human analysis was designed to be both collaborative and transparent.

The second aim of the paper was to explore which factors were reported to influence health be-
haviours, mood and wellbeing during the COVID-19 pandemic. Six main themes were identified by
researchers by interpreting the 15 topics for conceptual meaning and then clustering topics into themes.
Themes were split into three key areas involved in contributing to pandemic impacts relating to be-
haviour, health and wellbeing, and three higher-order themes relating to the complex interactions of
those key areas, and how constraints and control and reflections on wellbeing and personal growth
could modify impacts. The main themes align with and complement previously published qualitative
findings derived from our parallel studies on the same longitudinal cohort, which used established
qualitative methodologies (interviews, photo elicitation and thematic analysis) (Hanson et al., 2023;
Notley et al., 2022). The key themes we identified in these other qualitative studies, namely disruption,
adaptation, loss and salutogenesis, are evident as equivalent MATA topics/themes, enhancing validity
across study elements via triangulation of data sources and methods. In addition, similar themes re-
lated to pandemic health and wellbeing impacts, health behaviours and coping strategies and adaption
have been identified in the wider COVID qualitative literature, albeit with smaller samples (Bieniak
et al., 2024; Griffin et al., 2023) or focused on specific populations (Bailey et al., 2022; Derrer-Merk
et al., 2023; Macpherson et al., 2022). International ‘Big Qual’ studies found that long-term wellbeing
was substantially shaped by experiences of loss at the start of the pandemic (Albo et al., 2025; Lowe
et al., 2024) further highlighting the need to explore such datasets to understand how wellbeing and
behaviour can be supported over time.

Whilst data collection for our previous studies and the wider qualitative COVID literature was con-
ducted within relatively narrow timeframes, the exploratory findings presented here offer temporal
insight into how themes may have played out longitudinally by reporting the prevalence of generated
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topics at different timepoints (3, 6, 12 and 24 months post-lockdown). For example, the topic of ‘Stress’
was most prevalent as England was emerging from the first lockdown (3 months), then decreased
slightly over time. This aligns with studies that found that increases in mental health issues during
the first UK lockdown subsequently declined as restrictions eased, although levels of psychological
distress remained elevated compared to pre-pandemic (Daly et al., 2020; Dhensa-Kahlon et al., 2025;
Fancourt et al., 2020). The increased prevalence of the topic of ‘Salutogenesis’ immediately after 2020
and 2021 hard lockdowns (3 and 12months) likewise corresponds with literature indicating that these
periods could facilitate purposeful engagement in meaningful, and sometimes new, activities to support
physical and mental health (Ellen et al., 2021; Griffin et al., 2023; Hanson et al., 2023; Williams, 2021;
Williams et al., 2021). Of particular note within our findings is the topic of concerns around ‘physical
health’, an aspect of ‘disruption’ identified in our prior work (Hanson et al., 2023; Notley et al., 2022),
with both topics in the theme initially having low prevalence, rising over time to have the highest prev-
alence at 24 months when nearly all restrictions had been lifted. While national UK statistics indicate
relative stability in self-reported general health over this period (Knight et al., 2024; Tan et al., 2024),
other evidence relating to an ongoing backlog in health care service provision highlights the importance
of continued surveillance of the longer-term experience of secondary, negative health consequences
(Derrer-Merk et al., 2023; Zhai & Du, 2020).

Strengths and limitations

A key strength of the study was its longitudinal design covering a period of significant social challenge
and change, covering almost 2years from when England was beginning to emerge from the first
national lockdown to when nearly all restrictions had lifted. MATA enabled the rapid analysis of this
large longitudinal qualitative dataset that would not have been feasible to analyse manually within the
available resources. The reduced time required relative to manual analysis, which can be over four times
as time consuming (Towler et al., 2023), demonstrates the method's ability to improve the efficiency of
coding and theme generation. Furthermore, MATA's efficiency increases as datasets get larger, as larger
datasets would not typically require any additional analysis time.

The analysis was conducted using a systematic and established method, MATA, which has been val-
idated and used on other datasets (Bondaronek et al., 2023; Towler et al., 2023). This approach ensured
rigorous implementation of the methodology and reliable interpretation of the results. Instead of relying on
general-purpose Al platforms, such as LLLMs, which have been criticized for their lack of transparency and
interpretability (Kornblith et al., 2022; Ziems et al., 2023) as ‘black-box” models, a bespoke topic modelling
approach provided greater transparency and control. It enabled a collaborative process where experienced
qualitative researchers and domain experts retained oversight and active involvement in the production of
the findings, ensuring the themes were coherent and interpretable. Whilst providing researchers control
over interpretation, what may be lost with this approach, however, are the ‘lightbulb moments’ in manual
qualitative research where a single participant with a unique position or unusual context gives a perspective
that illuminates understanding, advancing knowledge, from an N of 1 perspective.

While weighting metrics enabled a non-biased method of allocating free-text entries into a primary
topic, some responses could plausibly fit into multiple topics, leading to occasional overlap and reduc-
ing specificity in interpretation. This highlights the need for caution in defining topic boundaries and
ensuring nuanced analysis. The themes generated through MATA were consistent with findings from
other qualitative studies in the C-19 Health Behaviour and Wellbeing Daily Tracker Study (Hanson
etal.,, 2023; Notley et al., 2022), supporting the validity of the findings and demonstrating the method's
ability to produce meaningful insights.

Covariates can be included in the MATA analysis, allowing for quantitative exploration of the quali-
tative findings, as demonstrated in this paper by ranking and plotting mean prevalence scores by time-
point. This process could also be taken to understand how topics vary across participant characteristics
(e.g., gender, deprivation), helping to detect patterns that might not be easily discernible in qualitative
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analysis alone. This mixed-methods approach has the potential to increase generalizability and repli-
cability of analysis and could assist in forming hypotheses about sociocultural influences. However,
caution should be applied where it is used, as it could lead to erroneous conclusions. This is especially
relevant when data relates to perspectives self-reported by participants, rather than systematically mea-
sured phenomena. Our interpretation of the prevalence data was assisted by triangulating with previous
study findings and the literature, and we advocate for triangulation where possible.

While MATA reduces the need for researcher reflexivity, it remains essential for researchers to crit-
ically engage with the interpretation of machine-generated topics. This is particularly important given
the rise of LLMs, where the potential for algorithmic bias is not only a concern but may be further
exacerbated by these technologies (Hu et al., 2024; Zack et al., 2024). Developing reflexive practices
tailored to machine-assisted analysis is essential to address biases inherent in data and algorithms. To
the authors' knowledge, no established methods currently exist to systematically guide this process,
highlighting an urgent need for methodological development.

Implications for research, practice, policy

MATA provides a practical solution for analysing large-scale qualitative datasets quickly and rigorously
while utilizing qualitative research expertise to extract meaning, interpret findings, work collaboratively
and apply theoretical frameworks. Its application in this study demonstrates its potential to become a
standard method for researchers working with Big Qual datasets, particularly in contexts where scalability
and efficiency are critical (Brower et al., 2019; Chandrasekar et al., 2024). The broader applicability of
MATA to diverse qualitative data types, such as in-depth interview transcripts, is uncertain. Further
investigation is required to determine its suitability for richer, less structured datasets.

The use of AT in qualitative analysis may challenge epistemological foundations of qualitative re-
search by applying a reductionist approach to data analysis. This may be seen to be at odds with inter-
pretivism, which emphasizes exploration of subjective meanings and constructed realities in analysis.
Taking a pragmatist position, MATA was considered the best approach for this study, given the large
longitudinal dataset, but need for flexibility in interpretation that human-led analysis provides to ensure
validity. Adopting a ‘human in control’ approach, such as MATA, may be more reflective of critical
realism, acknowledging computer generated patterns in the textual data exist, but allowing for human
exploration of conceptual meaning situated in the wider societal context. As technology advances, and
human adoption of it increases, we may see new paradigms emerge however (Williams, 2024).

The quantification of qualitative data raises important considerations about balancing efficiency
with the depth and quality of machine outputs. Researchers must critically evaluate how quantification
impacts the interpretative process and ensure that the outputs are meaningful, nuanced and transparent.
Whilst this process was undertaken through discussion for this study, as Al-assisted qualitative anal-
ysis evolves and becomes more prevalent, it will become necessary to develop evaluation tools. A key
step in this process involves the development of an evaluation framework tailored to machine-assisted
analysis methods, such as topic modelling. Such a framework would provide researchers with quality
indicators for assessing Al-generated outputs, ensuring that scalability does not come at the expense of
interpretative rigour.

Reflexivity in Big Qual requires redefinition to address systemic biases inherent in data and algo-
rithms. The use of Al approaches such as natural language processing, and in particular LLMs, in
qualitative research brings new ethical challenges, particularly in ensuring the transparency, reliability
and fairness of Al-generated outputs. A quality evaluation framework that can be systematically applied
to evaluate the quality of AT output of Big Qual data is needed. This would ensure that the findings
remain ethical, nuanced and aligned with the principles of qualitative research, increasing the quality,
transparency and trust in the utility of Big Qual methods.

AT models often prioritize dominant patterns in training data, which can lead to the amplifica-
tion of majority viewpoints while marginalizing less prevalent perspectives (Peterson, 2024). This risk
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of underrepresenting minority voices highlights the need for intentional efforts to counteract bias.
Incorporating user-centred, participatory approaches should help ensure that AT tools are designed and
applied in a way that is both equitable and ethically sound (Birhane et al., 2022).

CONCLUSION

The application of MATA to qualitative free-text data demonstrated its ability to efficiently identify
meaningful patterns while maintaining researcher oversight. We identified key self-reported factors
influencing health behaviours, mood and wellbeing across different time points during the COVID-19
pandemic. This study advances machine-assisted topic analysis by demonstrating a hybrid approach that
increases researcher control and interpretability. As Al continues to shape research methods, ensuring
transparency and conceptual rigour remains critical. Future research should focus on developing
systematic evaluation frameworks to ensure transparency, reliability and the mitigation of both machine-
and human-‘induced’ bias. Reflexivity is important in this process, particularly given the risks of
algorithmic bias in Al-driven methods. Additionally, participatory, user-centred approaches are needed
to ensure that Al-driven qualitative analysis is applied ethically and equitably, with frameworks that
integrate both evaluation and reflexivity to uphold the rigour of qualitative research. By incorporating
covariate analysis, MATA exemplifies how computational approaches can complement qualitative
methodologies, offering a more integrated mixed-methods framework that preserves depth while
enabling insights into different patterns and groups, especially those who are marginalized.
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