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ABSTRACT

Dietary restriction (DR) robustly increases lifespan across taxa. However, in humans, long-term DR is difficult to maintain, lead-
ing to the search for compounds that regulate metabolism and increase lifespan without reducing caloric intake. The magnitude
of lifespan extension from two such compounds, rapamycin and metformin, remains inconclusive, particularly in vertebrates.
Here, we conducted a meta-analysis comparing lifespan extension conferred by rapamycin and metformin to DR-mediated
lifespan extension across vertebrates. We assessed whether these effects were sex- and, when considering DR, treatment-specific.
In total, we analysed 911 effect sizes from 167 papers covering eight different vertebrate species. We find that DR robustly extends
lifespan across log-response means and medians and, importantly, rapamycin—but not metformin—produced a significant
lifespan extension. We also observed no consistent effect of sex across all treatments and log-response measures. Furthermore,
we found that the effect of DR was robust to differences in the type of DR methodology used. However, high heterogeneity and
significant publication bias influenced results across all treatments. Additionally, results were sensitive to how lifespan was re-
ported, although some consistent patterns still emerged. Overall, this study suggests that rapamycin and DR confer comparable
lifespan extension across a broad range of vertebrates.

1 | Introduction groups, from invertebrate species, such as nematode worms
(Caenorhabditis elegans) or fruit flies (Drosophila melanogas-

Dietary restriction (DR) is a classical approach to lifespan ex- ter), to vertebrate species, such as mice and primates (Bodkin

tension through the reduction of food intake without entering
a malnourished state. DR and its lifespan-extending effects
have been the source of study for over 100years (Osborne
et al. 1917; McCay et al. 1935; Selman 2014; although see also
Speakman and Mitchell 2011) and have been shown to ro-
bustly increase the lifespan of numerous different taxonomic

et al. 2003; Anderson et al. 2009; Fontana et al. 2010; see
Nakagawa et al. 2012 for a previous meta-analysis on lifespan
extension across model and non-model organisms). Despite
this, the effects appear to not always be universally positive
(Harper et al. 2006; Sohal et al. 2009) and in humans, such
an imposed and long-term reduction in caloric intake is often
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associated with low adherence (Scheen 2008; Barte et al. 2010;
Selman 2014; Di Francesco et al. 2024). As a result, substances
that mimic a DR response without the need for an active re-
duction in caloric intake, called DR mimetics, have been put
forward as possible alternatives (Mattson et al. 2001; Ingram
et al. 2006; Mouchiroud et al. 2010).

Two of the most widely used compounds that have been the
focus of much research on lifespan extension to date are rapa-
mycin and metformin. Rapamycin (or Sirolimus) was identified
and isolated from Easter Island soil bacteria in 1975 (Vézina
et al. 1975) and has been used primarily as an food and drug
administation-approved immunosuppressant for kidney trans-
plants and cardiac stents (Kaeberlein et al. 2023). It is an inhib-
itor of the mechanistic target of rapamycin (mTOR) pathway
and has been shown to extend lifespan and reduce epigenetic
ageing across a wide variety of organisms in a manner similar
to DR (Harrison et al. 2009; Miller et al. 2011; Swindell 2017;
Horvath et al. 2019). Rapamycin has also been found to have a
number of benefits in reducing age-related diseases in humans
(Lee et al. 2024). However, in some species, this positive effect
is not present, for instance on epigenetic ageing in the common
marmoset (Horvath et al. 2021) or rates of ageing in mice (Neff
et al. 2013).

The second popular DR mimetic, Metformin (or dimethylbigu-
anide) is used to combat type II diabetes as it reduces levels of
circulating glucose and improves insulin sensitivity in the body
(Bailey and Turner 1996). Metformin is an activator of adenos-
ine monophosphate-activated protein kinase (AMPK) and has
been shown to extend lifespan in diverse species, from nema-
todes (Onken and Driscoll 2010) to mice (Anisimov et al. 2005).
It has also been shown to decelerate ageing in male cynomo-
lgus monkeys (Yang et al. 2024). However, the overall effects
of metformin on lifespan remain inconclusive (Selman 2014;
Mohammed et al. 2021). This highlights the urgent need to (1)
reassess the degree to which these two DR mimetics promote
a lifespan extension and (2) compare the effects of these two
compounds with that of DR. Focusing on these two questions
in vertebrate species will allow us to conclusively state which of
these two mimetics has the greatest potential as a substitute for
long-term DR in humans.

To this end, we performed a systematic review and meta-
analysis to assess the degree of lifespan extension in vertebrate
species under three well-established longevity treatments: DR
(two different types of DR, fasting and caloric reduction) and
two well-known DR-mimetics, metformin and rapamycin. We
also tested two other important moderators: (1) the sex of the an-
imals subjected to each treatment to assess whether the effects
were sex-specific and (2) for DR specifically, the form of meth-
odology used to test whether DR-specific lifespan extension was
sensitive to how DR was implemented.

2 | Methods

Note, where appropriate we follow MERIT guidelines as per
Nakagawa, Ivimey-Cook, et al. (2023). All data and code are
available from Zenodo 10.5281/zenodo.15673918.

2.1 | Search and Screening

EIC performed a systematic literature search following Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA; see Moher et al. 2011), using the databases Scopus
and Web of Science first searched in July 2023 and then updated
in December 2024 using the search strings found in Table S1
(N.B. searches included both published and unpublished stud-
ies via the Web of Science databases). For the searches from
July 2023, EIC and ZS manually screened the papers in Rayyan
(Ouzzani et al. 2016). We also included references in our filter-
ing that were not found in the original search but were in five
papers that appeared in our search (namely, Everitt et al. 2005;
Mair and Dillin 2008; Colman et al. 2014; Speakman et al. 2016;
Ingram and de Cabo 2017; Selvarani et al. 2021). For the up-
dated search in December 2024, EIC manually screened papers
using the metRscreen application (Ivimey-Cook 2025) after re-
moving duplicates between the 2023 and 2024 searches using
the {synthesisr} v. 0.3.0 package (Westgate and Grames 2020).
See Figure S1 for a Prisma diagram of searching, screening
and filtering. Furthermore, we followed the PRISMA-EcoEvo
checklist created by O'Dea et al. (2021) (Table S2) and checked
our meta-analysis with the MATES (Meta-analysis Appraisal
Tool for Environmental Sciences) checklist for meta-analysis
reporting quality (Morrison et al. 2025; Table S3). In all cases
we chose studies where there was an experimental group (typi-
cally a control or a treatment without the lifespan intervention)
along with a corresponding treatment group (with the lifespan
intervention). We only focused on studies that involved verte-
brates, provided a measure of lifespan (either mean, median or
present in a survival curve), provided some measure of sample
size, standard deviation or standard error (and sample size), or
in the particular case of studies with survival curves, had sur-
vival curves that crossed 50% for the control and experimental
cohorts (see Figure S1).

2.2 | Data Extraction

If raw data was not available (as in most cases) EIC and ZS ex-
tracted mean and median lifespan from all accepted papers. EIC
then double-checked all extracted data. ZS checked the repro-
ducibility of the model code. Mean data was initially favoured;
however, upon screening several papers, it became apparent
that a large proportion of papers simply provided median val-
ues of lifespan or presented data in survival curves (with no raw
data archived). As a result, we extracted both. If values were
provided in table or text, we extracted these directly from the
source paper. However, if survival curves were present, EIC
and ZS extracted the median lifespan (where survival curves
reached 50%) using WebPlotDigitizer (Rohatgi 2017) and, where
suitable (for instance when boxplots were present) using meta-
Digitise v.1.01 (Pick et al. 2018). Where possible, EIC and ZS also
extracted a corresponding standard error or standard deviation
(for means), or, if these were unavailable (or were medians), a
sample size for the control and treatment groups. Any miss-
ing standard deviations were then calculated prior to analysis
(see below). If any raw data was present, we directly calculated
medians along with mean values and corresponding standard
deviations. Note that if raw data was presented separately per

20f15

Aging Cell, 2025

85U8017 SUOWILWIOD BAIIeID 3|cedldde ayy Aq peuenob are ssjoie YO ‘8sn JO Sa|ni Joy Ariqi8UIIUO /8|1 UO (SUOTIPUOD-pUe-SLLRI/LI0D A8 1M AR 1 BU1|UO//:SANY) SUOTIPUOD pue Swie | 8L 88S *[6Z0Z/TT/0T] uo Ariqiauliuo A(im eiibuy se3 JO AIsieAlun Aq TETOL  BIe/TTTT OT/I0p/L0o A3 | ARelq1jeuljuo;/Sdny Woly papeo|umod ‘6 ‘G20z ‘92.6724T


https://doi.org/10.5281/zenodo.15673918

sex, we did not combine these to create a ‘mixed’ sex grouping.
In addition, if censoring were involved, where possible we ex-
cluded those that were censored. Lastly, following Ivimey-Cook
et al. (2023), EIC and ZS recorded all locations of the lifespan
data from each source paper.

2.3 | Moderators

For each paper, EIC and ZS also extracted two different moder-
ators, namely:

1. Treatment (Rapamycin, metformin or DR. In the case
of DR we noted whether the form of DR was a reduc-
tion in intake, removal of food or fasting, we did not
include isocaloric reduction in protein or other macro-
molecules). In all cases, we included a control group (or
a treatment without the lifespan intervention) alongside
an experimental group that received the added longevity
treatment. We also noted if there were any other envi-
ronmental variables that were used in the study, for in-
stance, the addition of radiation or use of a disease model
of mouse. For the DR group only, we recorded whether
the experiment involved a percent reduction in calo-
ries or food intake (‘Percent Reduction’) or whether the
vertebrate was fasted (meaning simply without food for
a period of time; ‘Fasted’). Only in one case did a study
explicitly test the effect of reduction in food and fasting
(‘Percent Reduction and Fasted’).

2. Sex of the studied vertebrate (if no sex was mentioned we
assumed that both males and females were combined and
classed this as ‘mixed’).

2.4 | Statistical Analysis

All analyses and visualisation used R v. 4.4.2 (R Core
Team 2024). EIC calculated the log-response ratio of means
or medians which were adjusted for small-moderate sample
size bias following Lajeunesse (2015). Then, using the rma.mv
function from {metafor} v. 4.6-0 (Viechtbauer 2010), EIC ran
two multi-level different models where each effect size was
weighted based on the inverse variance-covariance matrix
using different approaches to replace missing standard de-
viations, all cases and missing cases following Nakagawa,
Lagisz, et al. (2023) note we changed the tested distribution
to t distribution throughout, in addition where appropriate to
allow convergence we also changed the optimiser to ‘Nelder-
Mead’ using the ‘optim’ optimiser). As there were no quali-
tative differences were detected between the two methods
used to replace missing standard deviations, so we present the
results from the ‘all cases’ method here (for overall effect of
treatment using missing cases, see Figure S2). As there were
no qualitative differences between types of approaches, we
present all results using the all-cases method. All models had
the fixed moderator of treatment type, and the random effects
of species, paper (to account for non-independence of effects,
as in many cases multiple effect sizes originated from the
same paper), and an observation level ID to absorb residual
variance (Nakagawa and Santos 2012). We then fit a variety of

multi-level models according to the moderators listed above.
Average marginal effects from the {emmeans} v. 1.10.6 pack-
age (Lenth et al. 2019) were then displayed either using the
forchaRd} v. 2.0 (Nakagawa et al. 2020; Nakagawa, Lagisz,
et al. 2023) or {ggplot2} v. 3.5.1 (Wickham 2011) plotting
packages alongside the {gt} v. 0.11.1 table package (Iannone
et al. 2025). We present data from the model that combines
study means and median values together but also, where ap-
propriate, discuss the separate effects. Lastly, publication bias
was tested and adjusted for by fitting a model with the inverse
of effective sample size (small-study bias) and mean-centred
year (time-lag bias) as covariates (see Nakagawa et al. 2021).
Lastly, following the methodology of Nakagawa, Lagisz,
et al. (2023), we also performed a Geary test to assess adher-
ence of the log-response ratio of means to a normal distribu-
tion following Lajeunesse (2015). As only five out of all 911
effect sizes (0.5%) failed this test, we present results with these
five included.

3 | Results
3.1 | Effect Sizes

In total, we extracted 911 effect sizes (k) from 167 papers (n)
(McCay et al. 1935; Kibler and Johnson 1966; Leveille 1972;
Kendrick 1973; Drori and Folman 1976; Fernandes et al. 1976,
1997; Merry and Holehan 1979; Weindruch and Walford 1982;
Yu et al. 1982, 1985, 2019; Cheney et al. 1983; Davis et al. 1983;
Lloyd 1984; Kohno et al. 1985; Weindruch et al. 1986; Hordkova
et al. 1988; Masoro et al. 1989, 1995; Goodrick et al. 1990; Harris
et al. 1990; Snyder et al. 1990; Koizumi et al. 1992; Shimokawa
et al. 1993, 2003, 2015; Thurman et al. 1994; Murtagh-Mark
et al. 1995; Sheldon et al. 1995; Willott et al. 1995; Hursting
et al. 1997; McCarter et al. 1997; Yoshida et al. 1997; Pugh
et al. 1999; Turturro et al. 1999; Lingelbach and McDonald 2000;
Sell et al. 2000; Sogawa and Kubo 2000; Wolf et al. 2000; Bartke
et al. 2001; Jolly et al. 2001; Kealy et al. 2002; Tanaka et al. 2002;
Tsao 2002; Bodkin et al. 2003; Sharp 2003; Dhahbi et al. 2004;
Lee et al. 2004; Anisimov, Berstein, et al. 2005, 2011; Anisimov,
Egormin, et al. 2005, 2010; Anisimov et al. 2008, 2015; Anisimov,
Piskunova, et al. 2010; Anisimov, Zabezhinski, et al. 2010, 2011;
Hamadeh et al. 2005; Ikeno et al. 2005; Lawler et al. 2005;
Hamadeh and Tarnopolsky 2006; Harper et al. 2006, 2010; Ma
et al. 2007; Cai et al. 2008; Chen et al. 2008; Garcia et al. 2008;
Inness and Metcalfe 2008; Li et al. 2008, 2017, McDonald
et al. 2008; Merry et al. 2008; Pearson et al. 2008; Zha et al. 2008;
Arum et al. 2009; Harrison et al. 2009, 1984; Buschemeyer
et al. 2010; Flurkey et al. 2010; Liao et al. 2010, 2016; Rikke
et al. 2010; Smith et al. 2010; Yamaza et al. 2010; Herranz
et al. 2011; Miller et al. 2011, 2014; Aires et al. 2012; Cameron
et al. 2012; Comas et al. 2012; Komarova et al. 2012; Mattison
et al. 2012; Ramos et al. 2012; Martin-Montalvo et al. 2013; Neff
et al. 2013; Ramsey et al. 2014; Sun et al. 2013; Vera et al. 2013;
Chiba et al. 2014; Colman et al. 2014; Fok et al. 2014; Hasty
et al. 2014; Khapre et al. 2014; Lopez-Dominguez et al. 2015;
Mercken et al. 2014; Popovich et al. 2014; Zhang et al. 2014;
Christy et al. 2015; Hurez et al. 2015; Johnson et al. 2015; Huang
et al. 2015; Meissner et al. 2015; Arriola Apelo et al. 2016; Kawai
et al. 2016; Koopman et al. 2016; Mitchell et al. 2016, 2019; Patel
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et al. 2016; Richardson et al. 2016; Sataranatarajan et al. 2016;
Strong et al. 2016, 2020; Derous et al. 2017; Felici et al. 2017;
Guo et al. 2017; Someya et al. 2017; Wang et al. 2017, 2024; Xie
et al. 2017; Deepa et al. 2018; Fang et al. 2018; Pifferi et al. 2018;
Prokhorova et al. 2018; Reifsnyder et al. 2018; Correia-Melo
et al. 2019; Yamauchi et al. 2019; Ferrara-Romeo et al. 2020;
Palliyaguru et al. 2020; Parihar et al. 2020, 2021; Pomatto
et al. 2020; Wei et al. 2020; Liang et al. 2021; Unnikrishnan
et al. 2021; Zhu et al. 2021; Acosta-Rodriguez et al. 2022; Dhillon
et al. 2022; McKay et al. 2022; Reijne et al. 2022; Tibarewal
et al. 2022; Zaradzki et al. 2022; Duregon et al. 2023; Tseng
et al. 2023; Baghdadi et al. 2024; Di Francesco et al. 2024;
Sowers et al. 2024; Vermeij et al. 2024; Merry and Holehan 1981;
Blackwell et al. 1995; Fernandes et al. 1997; Berrigan et al. 2002;
Turturro et al. 2002; Black et al. 2003; Chiba and Ezaki 2010;
Harper et al. 2010; Bhattacharya et al. 2012; Bitto et al. 2016;
Mattison et al. 2017; Birkisdottir et al. 2021; Mitchell et al. 2023;
Wang et al. 2024) which comprised 354 means (n=81) and 557
(n=160) medians. Unsurprisingly, DR was the most common ef-
fect size of the lifespan-extending treatments (k=677, n=115)
followed by rapamycin (k=188, n=38) and metformin (k=46,
n=17). Of these, the most represented species was the mouse
(k=787, n=127), followed by the rat (k=83, n=32), the rhesus
macaque (k=23, n=4), the dog (k=6, n=2), the redtail killifsh
(k = 5, n = 2), the turquoise killifsh (k = 4, n = 1), the stickle-
back (k=2, n=1) and, lastly, the mouse lemur (k=1, n=1). The
sex that was most studied was male (k=428, n=114) followed
by female (k=380, n=77), with several effect sizes originating
from mixed-sex groups (k=103, n=35). For DR, the most com-
mon method was through a percent reduction in caloric intake
(k=610, n=103), followed by fasting (k=63, n=18), while a
combination of both was far less used (k=4, n=1). Across all

dietary treatments (and when looking across all measures,
means and medians combined), the total heterogeneity (I; or the
total variance both between and within studies; Nakagawa et al.
2023) across effect sizes was very high (96.5%) suggesting high
variability or inconsistency among effects (Yang et al. 2023). The
effect of study ID or the between-study heterogeneity was less
38.5% than the effect of observation ID or the within-study effect
58.0%. Lastly, the species effect explained 0% heterogeneity. All
other model heterogeneity is given in the supplementary model
outputs. Note in all cases, results are presented in the following
order: p value; estimate (lower confidence interval, higher con-
fidence interval).

3.2 | Publication Bias

Overall, there was no evidence of small-study bias or time-
lag bias influencing the average effect of the longevity treat-
ments across all measures (means and medians combined;
p=0.878; —0.018 [—-0.242, 0.207] and 0.232, —0.001 [—0.004,
0.001]; Figure 1 and Figure S3). However, when looking at
log-response mean and median values separately, there was
significant evidence of small study and time lag bias operat-
ing on log-response means but not medians (indicated by a
significant covariate of inverse of effective sample size and
mean-centred year). In particular, small study bias and time-
lag bias were found to be underestimating the overall average
effect for each treatment (mean small-study bias: p<0.001;
—0.635[—0.857, —0.413]; mean time-lag bias: p=0.011; —0.002
[-0.004, —0.001]). As a result, we interpret results from both
measures separately and combined, with and without publica-
tion bias adjustment.
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FIGURE1 | The mean effect of dietary restriction, metformin and rapamycin across vertebrate species. Each treatment has a mean effect size

with surrounding 95% confidence intervals. A positive mean effect indicates an overall lifespan-extending effect of the treatment, whereas a neg-
ative is the opposite. Means and errors are shown from models unadjusted (black) or adjusted (purple) for publication bias, as well as originating
from models with only medians (squares), only means (triangles) or using both measures combined (circle). Points represent individual effect sizes
scaled by precision (1/standard error), shapes denote measure type and colour denotes species (black = dogs, orange = mice, light blue = mouse lemur,
green =rats, yellow =rhesus monkeys, dark blue =sticklebacks, dark orange =redtail killifish and pink = turquoise killifish). Silhouettes created us-
ing rphylopic v. 1.50 (Gearty and Jones 2023). Attribution: All silhouettes available under creative commons licence CCO 1.0 (dog =Margot Michaud,
redtail killifish=Ryan Cupo, turquoise killifish =Tetsuo Kon, rhesus monkey=Ben Murrell, mouse lemur = Arpat Ozgul) and CC BY-NC-SA 3.0
(stickleback =Milton Tan). Figure by EIC and ZS.
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3.3 | Effect of Longevity Treatment

Both the DR and rapamycin treatments were significantly different
from zero both with and without adjusting for publication bias in
the models when both medians and mean values were combined
(with adjustment DR: p<0.001; 0.172 [0.132, 0.213]; with adjust-
ment rapamycin: p <0.001;0.216 [0.152, 0.279]; without adjustment
DR: p<0.001; 0.177 [0.143, 0.210]; without adjustment rapamycin
p<0.001; 0.204 [0.147, 0.261]; Figure 1 and S3) but did not differ
from each other (with adjustment: p=0.221; 0.044 [—0.026, 0.114];
without adjustment: p=0.406; 0.028 [-0.038, 0.093]; Figure 1 and
S3), despite rapamycin having a consistently greater average lifespan
extension compared to DR. This suggests that these two treatments
produced similar degrees of lifespan extension across all measures.
In contrast, the metformin treatment overlapped zero in both models
(with adjustment: p=0.069, 0.086 [—0.007, 0.178]; without adjust-
ment: p=0.088; 0.078, [0.012, 0.168]; Figure 1 and S3), suggesting
overall weak support for metformin as a drug to extend lifespan in
vertebrates. In both models, metformin was significantly different
from rapamycin (with adjustment: p=0.017; 0.130 [0.023, 0.237]
and without adjustment: p=0.021; 0.126 [0.019, 0.232]; Figure 1
and S3), and from DR when unadjusted from publication bias (with
adjustment: p=0.081; 0.086, [—0.011, 0.184] and without adjust-
ment: p=0.044; 0.098 [0.003, 0.194]; Figure 1 and S3). This pattern
remained robust when only looking at studies that used mice (the
most represented species; Figure S18) and even, for DR, when effect
sizes were limited according to the 900-day rule (Pabis et al. 2024;
Figure S18; although note that the number of effect sizes for
metformin was significantly reduced), which was suggested
in order to increase the robustness of intervention out-
comes. However, the log- response ratio of means for rapamy-
cin, unadjusted and adjusted for publication bias, overlapped
zero when only using individuals that passed the 900-day
rule (Fig. S18).

In all cases, (log-response means and medians, with and without
adjustment for publication bias), DR was found to extend lifes-
pan (means with adjustment: 0.164 [0.118, 0.209]; means with-
out adjustment: 0.124 [0.075, 0.173]; medians with adjustment:
0.168 [0.124, 0.212]; medians without adjustment: 0.186 [0.149,
0.222]; all p<0.001; Figure 1 and S3-S5). The opposite was true
for metformin, as only when looking at log-response means, ad-
justed for publication bias, did the average effect of metformin
not overlap zero (Figure 1 and S3-S5). For rapamycin, a lifespan-
extending effect was apparent when looking overall, as well as
log-response medians (unadjusted and adjusted) and log-response
means adjusted for publication bias (Figure 1 and S3-S5). Using
only log-response means caused both rapamycin and metformin
to produce a similar lifespan extension as DR (with adjustment:
p=0.796; —0.011 [—0.092, 0.071] and 0.994; 0.0004 [-0.112,
0.113]; and without adjustment: p=0.274; —0.051 [—0.142, 0.040]
and 0.627; —0.030 [—0.153, 0.092]; Figure 1 and S4). The average
effect of DR was also not significantly different from rapamycin
in both models involving medians, adjusted and unadjusted for
publication bias (with adjustment: p =0.166; 0.053 [—0.022, 0.127]
and without adjustment: p=0.282; 0.039 [—0.032, 0.109] Figure 1
and S5). The effect of dietary restriction was significantly different
from metformin when looking at unadjusted log-response medi-
ans but not when adjusted for publication bias (with adjustment:
p = 0.071; —0.101 [—0.210, 0.009] and without adjustment: p =
0.040; -0.114 [—0.222, —0.0054]; Fig 1 and S5).

3.4 | Effect of Sex and Dietary Methodology

For most models, across all lifespan treatments, the sexes
did not significantly differ from each other (Figure 2 and S6-
S14). Only in one model for metformin, did publication bias
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FIGURE 2 | The mean effect of sex under different lifespan-extension
techniques, dietary restriction, metformin and rapamycin across verte-
brate species. Each treatment has a mean effect size with surrounding 95%
confidence intervals. A positive mean effect indicates an overall lifespan-
extending effect of the treatment, whereas a negative is the opposite. Means
and errors are shown from models unadjusted (black) or adjusted (purple)
for publication bias, as well as originating from models with only medians
(squares), only means (triangles) or using both measures combined (circle).
Points represent individual effect sizes scaled by precision (1/standard er-
ror), shapes denote measure type and colour denotes species (black =dogs,
orange=mice, light blue=mouse lemur, green=rats, yellow=rhesus
monkeys, dark blue=stickleback, dark orange=redtail killifish and
pink=turquoise Kkillifish). Silhouettes created using rphylopic v. 1.50
(Gearty and Jones 2023), attribution given under Figure 1. Figure by EIC
and ZS.

50f 15

85U8017 SUOWILWIOD BAIIeID 3|cedldde ayy Aq peuenob are ssjoie YO ‘8sn JO Sa|ni Joy Ariqi8UIIUO /8|1 UO (SUOTIPUOD-pUe-SLLRI/LI0D A8 1M AR 1 BU1|UO//:SANY) SUOTIPUOD pue Swie | 8L 88S *[6Z0Z/TT/0T] uo Ariqiauliuo A(im eiibuy se3 JO AIsieAlun Aq TETOL  BIe/TTTT OT/I0p/L0o A3 | ARelq1jeuljuo;/Sdny Woly papeo|umod ‘6 ‘G20z ‘92.6724T



adjusted medians and means combined suggest that males dif-
fered significantly from females (p =0.043; 0.113 [0.004, 0.223]).

When testing whether males, females or a combination of both
produced a significant lifespan extension, similar variability
was found both across treatments and measures. For rapamycin,
both adjusted and unadjusted mean values suggested no influ-
ence on either sex (adjusted M: —0.083 [—0.269, 0.103]; adjusted
F: —0.092 [-0.266, 0.083]; adjusted Mixed: —0.024 [—0.209,
0.160]; unadjusted M: 0.058 [—0.040, 0.156]; unadjusted F: 0.054
[-0.290, 0.137]; unadjusted Mixed: 0.106 [—0.023, 0.235]; all
p>0.05. Figure 2 and S7). When looking at unadjusted median
values, all studied sex groupings were different from zero (unad-
justed M: 0.246 [0.131, 0.362]; unadjusted F: 0.271 [0.155, 0.386];
unadjusted Mixed: 0.262 [0.132, 0.392]; all p<0.001; Figure 2
and S8), which mirrors the overall unadjusted effect with mea-
sures combined (unadjusted M: 0.238 [0.126, 0.350]; unadjusted
F: 0.257 [0.146, 0.369]; unadjusted Mixed: 0.255 [0.133, 0.376];
all p<0.001; Figure 2 and S6). After adjusting for publication
bias, no sex groupings were different from zero both when look-
ing at log-response medians and overall (Figure 2 and S6-S8).
When looking at metformin, in most circumstances, metformin
did not extend the life of either sex (Figure 2 and S9-S11). Only
two models, unadjusted means and overall, produced evidence
of significant lifespan extension in females (unadjusted means:
p=0.038; 0.100 [0.006, 0.193]; Figure 2 and S9,S10) and males
(unadjusted overall: p = 0.015; 0.134 [0.027, 0.241]; and adjusted
overall: p = 0.048; 0.162 [0.0014, 0.323]; Fig 2 and S9-10). Once
again suggesting weak support for universal lifespan extension
in metformin. For DR, a much simpler pattern was observed.

Across models with means, medians and both measures com-
bined, both adjusted and unadjusted for publication bias, DR
was found to produce a lifespan extension in females, males and
mixed sex groupings (Figure 2 and S12-S14). Only when looking
at unadjusted mean values was there no lifespan extension in
the mixed sex group (p=0.102; 0.117 [-0.023, 0.256]; Figure 2
and S13).

In addition, both methods of DR with sufficient sample size
(percent reduction, and fasting) produced a lifespan extension
(Figure 3 and S15-S17). For the singular study which used a
method of both, only when measures were adjusted for publi-
cation bias did the method produce a significant lifespan exten-
sion (although note that this is based on very few effect sizes).
However, there were no significant differences between meth-
odologies both overall and when comparing just means or me-
dians adjusted or unadjusted for publication bias (Figure 3 and
S15-S17).

4 | Discussion

The overall aim of this meta-analysis was to compare the effect
of two widely-studied DR mimetics (rapamycin and metformin)
with DR across vertebrates. First, we replicate the general ob-
servation found across the animal kingdom that DR promotes
robust lifespan extension (Nakagawa et al. 2012) with analogous
effects across both males, females and mixed groupings along
with no difference in the type of DR methodology employed.
Second, we also find compelling evidence that rapamycin, but
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FIGURE3 | The mean effect of dietary restriction methodologies, Fasting, Percent Reduction and a combination of the two across vertebrate spe-

cies. Each treatment has a mean effect size with surrounding 95% confidence intervals. A positive mean effect indicates an overall lifespan-extending
effect of the treatment, whereas a negative is the opposite. Means and errors are shown from models unadjusted (black) or adjusted (purple) for pub-
lication bias, as well as originating from models with only medians (squares), only means (triangles) or using both measures combined (circle). Points
represent individual effect sizes scaled by precision (1/standard error), shapes denote measure type and colour denotes species (black =dogs, or-
ange =mice, light blue =mouse lemur, green =rats, yellow =rhesus monkeys, dark blue =stickleback, dark orange =redtail killifish and pink = tur-
quoise killifish). Silhouettes created using rphylopic v. 1.50 (Gearty and Jones 2023), attribution given under Figure 1. Figure by EIC and ZS.
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not metformin, significantly extends lifespan, in most cases sim-
ilar to that of DR, and that this was robust in mice to the removal
of short-lived controls when looking at medians and overall es-
timates (Pabis et al. 2024; although note that the log-response
means were not significant). However, we find significant het-
erogeneity in effects between and within studies as well as, and
most notably, we show that lifespan effects can be sensitive to
the type of measure reported (i.e., mean vs. median lifespan).
Most notably, the positive effect of rapamycin disappears when
looking at the log-response ratio of means, although both met-
formin and DR appear robust to differences in measure. We also
find evidence that publication bias may be obscuring the aver-
age effect of these treatments, which after adjusting for small-
study and time-lag bias, caused the effect of rapamycin to differ
significantly from zero in all measures.

The contrasting effects of rapamycin and metformin (in addition
to the robust effect of DR) may in part be due to mechanistic dif-
ferences in the mediating pathways (Figure 4). Although both
DR-mimetics are classified as mTOR inhibitors, their mode of
action is subtly different (Aliper et al. 2017). Whereas rapamycin
directly inhibits TOR signalling through the mTORC1 complex,
metformin acts indirectly through the activation of the adenos-
ine monophosphate-activated protein kinase (AMPK), which in
turn inhibits TOR signalling (Aliper et al. 2017). Whether a mi-
metic compound acts directly or indirectly to inhibit TOR signal-
ling may contribute to the differing degrees of lifespan extension
reported in this meta-analysis and, in addition, may explain the
added increase in lifespan when both metformin and rapamycin

are taken synergistically (Strong et al. 2016; Wolff et al. 2020).
Therefore, future work should aim to uncover the precise mech-
anistic explanation for the observed differences in lifespan ex-
tension between these two DR mimetics and how they relate to
the various mediating pathways of DR. This is particularly vital
as although similar pathways have been identified, the precise
mechanisms of action have been shown to differ, particularly
between rapamycin and DR (Miller et al. 2014). Finally, DR is
known to affect additional pathways beyond AMPK and mTOR,
such as growth hormone signalling and insulin/IGF1 signalling
pathways, which may explain why DR has more robust effects
compared to rapamycin and metformin (Green et al. 2022).

We also explored whether sex was an important modulator
of lifespan extension, as previous research had suggested a
decreased efficacy of DR in males in comparison to females
(Nakagawa et al. 2012). We found no consistent differences
in lifespan extension between all sex groupings and across all
treatments, although we note the one significant positive effect
of males in metformin when accounting for publication bias in
combined log-response means and median. However, overall,
the lack of consistent sex effect (particularly in DR) could be
due to differences in taxonomic groups studied (across verte-
brates and invertebrates in their study and simply vertebrates
here) and the calculated effect size (natural log of hazard ratio
in their study vs. log-response means and medians in ours).
Nevertheless, we provide evidence of a robust lifespan exten-
sion via dietary restriction acting on males, females and mixed
sexes. For metformin, as with the general lack of overall effect,
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FIGURE 4 |
Figure designed by ZS using BioRender.com.

Molecular pathways involved with dietary restriction, metformin or rapamycin. Arrows imply activation; bars denote inhibition.
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there was little evidence of a general sex effect (although note
the aforementioned exception), suggesting that regardless of the
sex of organism studied, a lifespan extension is unlikely to be
found. When observing the effect of sex on rapamycin the re-
sults are less clear. Whereas rapamycin had unadjusted median
and overall values suggesting an equal lifespan extension act-
ing across all levels of the sex moderator, correcting for publica-
tion bias appeared to diminish the positive effect of rapamycin
in both sexes. This clearly highlights the need to further assess
the sex-specific efficacy of rapamycin, particularly as the effects
have been found to differentially affect males and females across
a variety of species across the tree of life (Harrison et al. 2009;
Bjedov et al. 2010; Miller et al. 2014; Lind et al. 2016; Raynes
et al. 2024).

We also found that the type of DR technique used did not sig-
nificantly influence the degree of lifespan extension, with two
of the main types of DR methodology (percent reduction and
fasting) producing a significant extension in lifespan. We note
that the third technique, the mixture of both fasting and per-
cent reduction, also produced a significant lifespan extension
after adjusting for publication bias. Overall, this is unsurprising
as in many cases, aside from the few studies where individuals
were withheld from food for prolonged periods, the effects of
diet reduction and fasting were often inadvertently entangled.
For instance, in several studies, food was restricted to a percent-
age below ad libitum but also with a corresponding reduction to
the time period that the subject had to feed (or put another way,
increasing the time between feeding periods as typically they
were fed only once per day) (see Cheney et al. 1983; Horakova
et al. 1988; Black et al. 2003; Chiba and Ezaki 2010; Cameron
et al. 2012; Mitchell et al. 2019; Duregon et al. 2021). Only in one
study was the reduction in intake and increase in time between
feeding explicitly part of the experimental design (Acosta-
Rodriguez et al. 2022). In order to fully distinguish the effects
of restricting diet from the effects of fasting, a more appropriate
design would be simply to match the timing or duration of feed-
ing of the restricted group with the ad libitum, although study
subjects may increase feeding rate to compensate for the reduc-
tion in calories. However, regardless of the method used, this
further highlights the robust lifespan extension that manifests
as a result of restricting caloric intake across all studied verte-
brate species.

Importantly, we also found that the number of effect sizes orig-
inating from median values (k=557) was much larger than
from means (k=354). Under a normal distribution, means and
median values will be identical; however, medians are often
considered a better measure of central tendency than means
when data is right-skewed (frequent low values with a declin-
ing number of higher values) or if right censoring has taken
place (Bonett and Price 2019), which is often the case for sur-
vival data. An obvious easy solution would be for all papers to
report both the median and mean survival statistics alongside
the provision of raw data in order to more easily conduct meta-
analyses of this type in the future. Whilst not ideal, as median
values do not readily provide measures of variance around
them, techniques exist to impute missing standard deviations
based on existing data (see Nakagawa, Yang, et al. 2023). As
a result, simply ignoring median values, which appear to be
far more prevalent in literature surrounding DR and related

mimetics, risks drawing pre-emptive conclusions based on a
reduced sample of purely log-response ratio of means. We note
that in the log-response ratio of means, publication bias (here
in the form of the moderator of the inverse of effective sam-
ple size and mean-centered year of pulbication) was found to
be significantly influencing the reported lifespan extension
of all three techniques. Despite this, consistent patterns were
observed, namely, DR promoted a robust increase in lifespan
across all measures, whereas most measures suggested a sig-
nificant lifespan extension for rapamycin, and a lack of it for
metformin.

Lastly, whilst we provide compelling evidence for the lifespan-
extending efficacy of rapamycin, we emphasise the need for
much further research. Firstly, this meta-analysis was con-
fined to a small number of vertebrate species studied mostly
under laboratory conditions. As a result, there is a need for ad-
ditional studies to explore the generalizability and applicability
of these DR mimetics across other vertebrate species, particu-
larly in humans (although early indications of rapamycin and
DR appear positive; Aversa et al. 2024; Lee et al. 2024), and in
species that can be studied both in the laboratory and in their
natural environments. Secondly, there is a need to investigate
the heterogeneity in effects that exists across different strains
of the same species exposed to the same treatment (Harrison
and Archer 1987; Rikke et al. 2010). In particular, why there
appears to be large genotype-specific variation in response
to reduced caloric intake or DR mimetics, with some strains
showing positive effects while others exhibiting the opposite
(Liao et al. 2010; Swindell 2012, 2017). Answering these out-
standing questions will provide far deeper insights into the
mechanisms and ubiquity of DR- or DR-mimetic-mediated
lifespan extension.
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