Received: 15 August 2023 Revised: 8 September 2023 Accepted: 12 September 2023

DOI: 10.1111/jeb.14230

JournaL of Evolutionary Biology

FORUM

Implementing code review in the scientific workflow: Insights
from ecology and evolutionary biology

Edward R. Ivimey-Cook'® | Joel L. Pick?® | Kevin R. Bairos-Novak®® |

Antica Culina**® | Elliot Gould®® | Matthew Grainger’ ® | Benjamin M. Marshall®® |
David Moreau’ ® | Matthieu Paquet!®® | Raphaél Royauté!!® |

Alfredo Sanchez-T6jar'>® | InésSilval®*® | Saras M. Windecker®

1School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
2Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK

SAustralian Research Council Centre of Excellence for Coral Reef Studies & College of Science and Engineering, James Cook University, Townsville,
Queensland, Australia

“Rudjer Boskovic Institute, Zagreb, Croatia

*Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, the Netherlands

School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia
’Norwegian Institute for Nature Research, Trondheim, Norway

8Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
?School of Psychology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
O|nstitute of Mathematics of Bordeaux, University of Bordeaux, CNRS, Bordeaux INP, Talence, France
Université ParisSaclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France

2Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany

3Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Gérlitz, Germany

Correspondence
Edward R. Ivimey-Cook, School of Abstract
Biodiversity, One Health and Veterinary

Medicine, University of Glasgow, Glasgow,
UK. code review is an inevitable step in software development and is common in fields
Email: e.ivimeycook@gmail.com

Code review increases reliability and improves reproducibility of research. As such,

such as computer science. However, despite its importance, code review is notice-
Saras M. Windecker, School of Ecosystem
and Forest Sciences, University of

Melbourne, Melbourne, VIC, Australia. the propagation of coding errors and a reduction in reproducibility and reliability of
Email: saras.windecker@gmail.com

ably lacking in ecology and evolutionary biology. This is problematic as it facilitates

published results. To address this, we provide a detailed commentary on how to effec-

Funding information tively review code, how to set up your project to enable this form of review and detail
Center of Advanced Systems

Understanding its possible implementation at several stages throughout the research process. This

guide serves as a primer for code review, and adoption of the principles and advice
here will go a long way in promoting more open, reliable, and transparent ecology and

evolutionary biology.

KEYWORDS
coding errors, open science, reliability, reproducibility, research process, software
development, transparency

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2023 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

J Evol Biol. 2023;36:1347-1356. wileyonlinelibrary.com/journal/jeb 1347

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


www.wileyonlinelibrary.com/journal/jeb
mailto:
https://orcid.org/0000-0003-4910-0443
https://orcid.org/0000-0002-6295-3742
https://orcid.org/0000-0002-0152-1452
https://orcid.org/0000-0003-2910-8085
https://orcid.org/0000-0002-6585-538X
https://orcid.org/0000-0001-8426-6495
https://orcid.org/0000-0001-9554-0605
https://orcid.org/0000-0002-1957-1941
https://orcid.org/0000-0003-1182-2299
https://orcid.org/0000-0002-5837-633X
https://orcid.org/0000-0002-2886-0649
https://orcid.org/0000-0003-4850-6193
mailto:
https://orcid.org/0000-0002-4870-8353
http://creativecommons.org/licenses/by/4.0/
mailto:e.ivimeycook@gmail.com
mailto:saras.windecker@gmail.com

1348

IVIMEY-COOK ET AL.

JOURNAL OF Evqutionary Bioloqy

1 | INTRODUCTION

Across scientific disciplines, researchers increasingly rely on code
written in open-source software, such as R and Python, to clean,
manipulate, visualize, and analyse data (Lai et al., 2019; Mislan
etal., 2016; Peikert & Brandmaier, 2021; Peikert et al., 2021). Such
software allows for increased transparency and reproducibility
compared with software that operates through point-and-click in-
terfaces (‘User Interface’ or ‘Ul-based’), such as Minitab and SPSS
(Obels et al., 2020). One of the key benefits of this code-based
software is flexibility, because researchers can tailor analyses to
their specific research needs which would otherwise be unavail-
able. However, the flexibility of code comes at a cost, as it means
that it can be more error-prone (Budd et al., 1998). These errors
may be conceptual (e.g., implementing the wrong function for
a given task), programmatic (e.g., indexing the wrong column of
a data frame), or syntactic (e.g., the incorrect spelling of a state-
ment or function). Although Ul-based software is also prone to
conceptual errors, programmatic and syntactic errors are more
common in code-based software. These errors can contribute to
a lack of reproducibility or to the propagation of incorrect results
(see Obels et al., 2020 for a review of code and data in psychol-
ogy). Indeed, several high-profile retractions have centred on these
types of mistakes (Bolnick & Paull, 2009; Huijgen et al., 2012; Ma
& Chang, 2007; Miller, 2006; Williams & Biirkner, 2020). One way
to minimize potential errors, besides carefully annotating code and
following best coding practices, is to undergo a process of code
review. However, unlike in some disciplines (such as in computer
science and software development) where code review is routinely
implemented (Badampudi et al., 2019; Nelson & Schumann, 2004),
it is noticeably absent from the research and publication processes
in other academic disciplines that rely on code to make inferences
and predictions (Indriasari et al., 2020), including ecology and evo-
lutionary biology.

To address this, we advocate for a fundamental shift in research
culture that brings code review into all stages of the research pro-
cess, as reviewing of code is necessary to facilitate error correction
and to confirm the reproducibility and reliability of reported results.
This is particularly important as analyses are becoming ever more
complicated, especially in the fields of ecology and evolutionary bi-
ology (Touchon & McCoy, 2016). But how can we implement code
review? By whom, when, and how can it take place? In this paper, we
provide some suggestions about how to conduct a code review and
how to produce code that facilitates this form of review. Finally, we
discuss the application of code review throughout the entire process
of publication, from the early stages of pre-publishing right through
to after work is published. Although we focus mainly on issues and
techniques related to the R and Python coding languages due to
their popularity in the fields of ecology and evolutionary biology (Lai
et al., 2019; Mislan et al., 2016), the concepts and principles we dis-

cuss are widely applicable.

Is the code as Reported?

Methods and code must match

Does the code Run?

Code must be executable

Is the code Reliable?

Code runs and completes as intended

Are the results Reproducible?

b Results must be able to be reproduced

FIGURE 1 The four ‘Rs’ of code review. Figure design by B.M.M.

2 | WHAT SHOULD CODE REVIEW
EVALUATE?

Code review is the process of either formally (as part of the peer-
review process) or informally (as co-authors or colleagues) checking
and evaluating each other's code. It is critical to help avoid concep-
tual, programmatic, and syntactic errors in code and can take place
at any stage of the research cycle; pre-submission, during formal
peer review, or post-publication. Although the manner and scope in
which code review occurs may vary depending on the position in the
research cycle, the core priorities remain the same: to ensure code
is as reported in the methods section, is able to successfully run, is
reliable, and is able to reproduce stated results. Below we describe

these key priorities as the four Rs of code review (Figures 1 and 2):

2.1 | Isthe code asreported?

Code is a key research output and a critical component of scientific
methodology. As such, open code accompanying written methods
sections is becoming more common, following similar pushes for
Open and FAIR data (Lamprecht et al., 2020). Therefore, it is impera-
tive that code is checked for consistency when presented with the
corresponding manuscript. These questions help us avoid concep-
tual errors in code. Does the code match the description of what is
'Reported’ within the methods section (Figure 1, Box 1 in Data S1)?
Ensuring code matches the methods reported is imperative to evalu-
ate whether the code is doing what is stated in the manuscript and
whatitis intended to do by the user. For instance, methods may state
that an analysis uses a generalized linear model with Poisson error,
but the code instead fits a Gaussian error distribution. Reviewing for
this mismatch must be part of code review. In addition, and equally

important for reproducibility is whether the relevant packages (with

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod



IVIMEY-COOK ET AL.

1349

P roj e ct Is my folder structure logical?
. . Are raw data, code and intermediate
organ |Sat|on outputs separated?

Does file and folder naming complement
the workflow?

Can someone understand (and access)
the workflow and content of the data?
Is a README provided to explain data
contents, licensing, and curation?

Project and
input metadata

Is my code understandable?
Does my code have a consistent style?

Is external package use clearly
documented?

' Code
readability

§ Output o
B¢ reproducibility

Can the results be reproduced?

Are all components required to recreate
analysis and figures accessible?

Is there a clear link between code
and output?

FIGURE 2 A basic workflow for reviewable code that can be

adopted from the onset of a project. See Data S1 for a printable

checklist of the points listed here. Figure and checklist design by
B.M.M.

appropriate version numbers) are stated somewhere in the manu-
script. In general, it is good practice to, at the very least, list the
packages (with version numbers) that are integral to the analysis or
to visualization in the manuscript. These can be obtained by using
the ‘citation()’ function in R or using the {setuptools} package in Py-
thon. A full list of all packages used (and versions), for instance those
involved with cleaning and tidying of data, could be given elsewhere
such as in an associated. R or .py file. Importantly, this will allow for
any package or module with versions that are found to contain bugs
or coding errors to be identified at a later stage. Packages such as
{renv} (Ushey & Wickham, 2023; which replaces {packrat}, Ushey
et al.,, 2022), {groundhog} (Simonsohn & Gruson, 2023), or {poetry}
(Eustace, 2023) and {pipenv} (Pipenv Maintainer Team, 2023) in Py-
thon can help with ensuring a reproducible environment and allow
for specific loading of desired package versions. Another option is
containerization through the use of Docker (Boettiger, 2015; N.B.
detailed tutorials already exist which highlight the use of this repro-
ducible method in far more detail than we will discuss here).

2.2 | Does the code run?

Even if code matches the methodology reported in a paper, this does
not mean the code is executable (i.e., can ‘Run’). Programmatic and
syntactic errors can make code fail to rerun. For example, code will
not be able to be run if it includes calls to libraries (or modules) that
are not installed in the current computing environment or if there
are spelling mistakes (Figure 1, Box 1 in Data S1). Data sharing,
where possible, should accompany code sharing, so that code can
be fully rerun with the original data. If data sharing is not possible,

JournaL of Evolutionary Biology o

simulated data or a data snippet should be provided so that the code
can be rerun. In cases where it would take a long period of time to
rerun code (for instance with some forms of Bayesian modelling),
the code should be accompanied with appropriate model outputs
(readily provided by the author, see below ‘Output reproducibility’).

2.3 | Isthe code reliable?

Errors can still propagate through code that runs and produces
an output, because code can produce incorrect results in a repro-
ducible manner (i.e., every time the code is run). For example, if
code selects or modifies the wrong column in a dataset, the code
will still run, but produce a reproducible yet inaccurate result (i.e.,
the code is not ‘Reliable’; Figure 1, Box 1 in Data S1). This type of
error could easily be conceptual, arising from a misunderstanding
of the dataset, or programmatic, such as from indexing by number
and producing a mistaken column order or from user-defined func-
tions. Although some coding techniques, such as explicitly indexing
by column name or by performing unit testing of any user-defined
function (see Cooper, 2017); relevant packages include {testthat},
(Wickham, 2011) in R or {pytest} in Python (Okken, 2022), can help
avoid many of these mistakes, this type of error is common and also
extremely difficult to pick up by anyone without deep familiarity
with the dataset and code. In particular, these errors are thought to
scale with the number of lines and complexity of code (Lipow, 1982).
Although intrinsically linked to evaluating whether code can be run
(the second ‘R’), evaluating code reliability means not only ensuring
that the code runs to completion without error, but examining inter-
mediate outputs of the code to ensure there are no mistakes. The
functions ‘identical()’ in R and ‘numpy.array_equal()’ in Python can be
useful at this stage of code review to compare object similarity be-

tween newly generated and previously saved intermediate outputs.

2.4 | Are the results reproducible?

The last ‘R’ of code review builds on the previous code review stages,
and is perhaps the most fundamental: can the code produce the out-
put, and thus support the conclusions, given in the paper (Goodman
et al., 2016; Figure 1, Box 1 in Data S1)? As several recent papers
have highlighted (Archmiller et al., 2020; Errington et al., 2021; Mi-
nocher et al., 2021; Obels et al., 2020; Tiwari et al., 2021), reproduci-
bility in research results is often very low. Therefore, the final step of
code review is ensuring that final outputs when code is rerun match
those reported in the analysis and results sections (including any
relevant figures and narrative text contained within these sections).
With that said, at times obtaining the exact same result is not pos-
sible. Some level of tolerance must therefore be applied especially
when dealing with stochastic methods in which parameter estimates
will change between subsequent runs or with techniques that are
computationally demanding and slow. This can occur for example if
the ‘set. seed() function in R or ‘random.seed()’ function in Python

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod



1350

IVIMEY-COOK ET AL.

JOURNAL OF Evqutionary Bioloqy

has not been used prior to stochastic sampling. Providing model out-
puts can go some way in helping with this (see above); however, it
does not allow for the code to be explicitly run to see if you can ob-
tain similar results as stated in the paper (regardless of potential time
taken). In this case, newly generated results should be compared to
the originally reported results. The assessment of how well these
two match can then be done using different methods. For example,
Archmiller et al. (2020) suggest comparing the conclusion (the di-
rection and significance level) and the numbers (intervals matching
within one significant figure) of the original and reproduced results.
A useful example of this is given in Archmiller's et al. (2020) sup-
plementary material, in which they state that a mean of 4.12 and
interval of 3.45-4.91 reproduces the conclusion and numbers of a
study with a mean of 4.00 and interval of 3.30-5.00. Similar conclu-
sions would be drawn if these means (and Cls) were higher (e.g., 6.5,
6.0-7.0), but the numbers would not be considered quantitatively
reproduced. However, the conclusions and numbers would not be
reproduced if the model instead produced a mean of 4.10 with an
interval of -1.00 to 8.40 (as the confidence interval here overlaps
with 0). However, the use of one significant figure for comparison
of quantitative reproducibility is highly dependent on scale. One al-
ternative, which is unaffected by differences in scale, is provided by
Hardwicke et al. (2021) (see also Kambouris et al., 2023) who sug-
gest using % error [PE=(new - original)/original x 100]. Error is then
classified as non-existent when this value is O, minor if between O
and 10 and major (and not reproducible) if 10+.

Importantly, as well as the overlap with O (or null hypothesis)
not changing, the reported and reproduced estimate and intervals
should not significantly differ from each other. With stochastic
MCMC methods, the variation between chains is expected to be
much lower than variation within chain (i.e., the credible intervals),
and so similarly the reproduced value should be well within the
stated uncertainty of the reported estimate. It is worth noting and
mentioning in your review how closely the numbers and conclusion

matched with the reported results.

3 | SETTING UP YOUR CODE FOR
EFFECTIVE CODE REVIEW

Code review should evaluate if code matches reported methods,
whether code runs and is reliable, and lastly, if results can be re-
produced. But in order for these questions to be addressed, code
must be written and shared in a way that it is possible for someone
else to rerun an analysis; both to allow for code to be reviewed and
to be reused in the future when properly maintained and contained
(Boettiger, 2015). For this to happen, all necessary scripts must be
shared along with appropriate metadata indicating how the scripts
interact with one another, along with describing all other necessary
software and appropriate versions. Often, researchers lack formal
training in coding, and learn to code in an ad hoc fashion that ex-
cludes training on general styling, appropriate use of workflows, and
project organization. As a result, researchers may often not be aware

of the steps necessary to set up code for a project in a manner that
reflects best coding practices. Therefore, below we list key princi-
ples (Figure 2) that will help make code reviewable at any stage of

the research cycle.

3.1 | Project organization

Every project needs some form of directory organization and folder
structure. This is likely to be largely driven by the function and form
that your research takes, but an efficient and transparent folder
structure that keeps raw data separate from code and intermediate
outputs should be created. This helps to ensure that raw data is not
accidentally modified or overwritten if any data cleaning or wran-
gling techniques are applied. A simple folder and file structure such
as this will go a long way to help researchers from all coding skill lev-
els understand the order and flow of the data analysis, particularly
when the user creates sequentially labelled subfolders and scripts
where someone following the code knows which order things must
be run (e.g., files beginning with ‘01..) in addition to dividing and
naming folders to fit their purpose (e.g., data, scripts, function). Sev-
eral incredibly useful examples already exist (Alston & Rick, 2021;
Chure, 2022; Cooper, 2017; see also https://coderefinery.github.io/
reproducible-research/ and https://lakens.github.io/statistical_infer
ences/14-computationalreproducibility.html). Project code should
be stored and available on any data or code repository. Another op-
tion for organizing a project is to use pipeline or workflow tools (for
instance see https://github.com/pditommaso/awesome-pipeline),
such as the {targets} (Landau, 2021) and {workflowr} R packages
(Blischak et al., 2019) or the {luigi} package (The Luigi Authors, 2023)
in Python (see https://www.martinalarcon.org/2018-12-31-a-repro
ducible-science/). These tools allow users to automate the process
of data analysis, taking a raw dataset through the steps necessary to
produce data analysis and visualization. The advantage to the user
is that the code is compartmentalized into logical steps (e.g., import
raw data, data cleaning, data wrangling, data analysis, data visuali-
zation) and any changes to the code only affects the downstream
steps. For example, if we change the type of analysis we do, we do
not need to re-import the data or clean it again. This saves time in
computation (especially important for complex, long-running pipe-
lines) but is also advantageous for reproducibility, and sharing and
reuse of code. Reviewers can effectively rerun the steps needed
to produce a data analysis or figure without having to rerun time-

consuming pre-processing steps.

3.2 | Project and input metadata

Projects will instantly have better organization and increased re-
producibility when users know how they should work through the
various folders and subfolders. A README text file and additional
metadata gives users the signposts required to facilitate rerunning
of code. This can contain information on the packages used (e.g.,

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


https://coderefinery.github.io/reproducible-research/ 
https://coderefinery.github.io/reproducible-research/ 
https://lakens.github.io/statistical_inferences/14-computationalreproducibility.html
https://lakens.github.io/statistical_inferences/14-computationalreproducibility.html
https://github.com/pditommaso/awesome-pipeline
https://www.martinalarcon.org/2018-12-31-a-reproducible-science/
https://www.martinalarcon.org/2018-12-31-a-reproducible-science/

IVIMEY-COOK ET AL.

1351

the package name and version number), along with a detailed de-
scription of the various data files, project aim, contact information
of the authors, and any relevant licences in place for code or for
data (see https:/choosealicense.com/licenses/ for more informa-
tion). Furthermore, key information about source data is critical for
reproducing analysis code. If sharing data are inappropriate to your
study (for example when dealing with sensitive confidential data) or
if data are so large it cannot be easily shared, then a user can pro-
vide a sample of simulated data or a primer so that the code can
be checked and read (Hennessy et al., 2022; Quintana, 2020). How-
ever, if data are readily available, then providing detailed information
about what the data are (preferably in an associated README) and
where the data are (e.g., stored on a free data repository such as The
Open Science Framework (OSF), Zenodo, or for ecology data, the
Knowledge Network for Biocomplexity) should be provided. Meta-
data should include information, such as where the data come from,
who the owners are, as well as what each column header entails,
and any relevant acronyms or shorthand notation (ideally follow-
ing FAIR principles, so data are Findable, Accessible, Interoperable,
and Reusable; see Lamprecht et al., 2020). This is particularly use-
ful when controlled vocabulary is used throughout, and R packages
such as {codemeta} (Boettiger, 2017) and {dataReporter} (Petersen
& Ekstrgm, 2019) or Python packages such as {CodeMetaPy} (van
Gompel, 2023) and {cookiecutter} (Feldroy, 2022) can help with this.
Lastly, it is also crucial to explain what data cleaning or curation oc-
curred before the analysis code. For instance, outlining what previ-
ous data manipulation or pre-processing steps have been taken to
obtain the data in its current state or when an intermediate data file

was used.

3.3 | Code readability

Good readability of code is extremely important in enabling effec-
tive code review. Several quick solutions exist to provide increased
clarity: (1) explicitly calling packages (via a package's namespace, e.g.,
package::function() in R or package.module.function() in Python); (2)
using relative file paths (for instance using the {here} package (Mil-
ler, 2020) and preferably with an associated R project file, if using
R and RStudio or in a virtual environment if using Python); (3) re-
moving redundant packages; and (4) writing analysis code with clear
subheadings, intuitive coding comments, and easy-to-understand
object names. Best practice coding tips can be implemented by R
packages such as {styler} (Mdiller & Walthert, 2020) or {pycodestyle}
in Python (Rocholl, 2022) and can format code in a number of stand-
ardized styles (e.g., Google, tidyverse in R, or PeP8 in Python) with a
single line of code or a click of a button. Furthermore, the use of R/
Python Markdown, Quarto or the open-source integrated develop-
ment environment, Jupyter Notebook (or its extension, JupyterLab)
enables users to present code in chunks which, along with suitably
descriptive comments, allows for far easier readability. In addition,

several recent guides and primers have been written that focus on

JournaL of Evolutionary Biology o

increasing coding cleanliness (Filazzola & Lortie, 2022; Hunter-Zinck
et al., 2021; Sweigart, 2020), so we urge the reader to consult these

guidelines for tips and advice on improving code readability.

3.4 | Output reproducibility

One of the key principles and requirements of code is the ability to
correctly reproduce published graphs, statistics, and results. In order
to do so, a user's code needs to provide a clear link between each
section of the code and the various reported graphs and outputs to
enable comparison of code to paper and to results. This should then
facilitate checking that the results produced by the code match the
stated results in the publication. In some cases, reproducing analysis
from models can take considerable time to complete, for instance,
when re-running complicated Bayesian models or other techniques
involving long computational time. In this case the ‘exact’ reproduc-
ibility of results is not always possible if code must simulate a sto-
chastic process (e.g., Monte Carlo sampling methods). In this case,
using set. seed() or saving simulation outputs still allows for repro-
ducible results (e.g., with the ‘saveRDS()’ function in R or the ‘pickle.
dump()’ function in Python) and can enable code reviewers to check
the reproducibility of the reported results.

4 | PRE-PUBLICATION: SETTING UP A
CODE REVIEW GROUP

Informal training coupled with insufficient time and incentives
(Touchon & McCoy, 2016) means that coding and subsequent
analysis are often the responsibility of a single member of a team
throughout a project's entire lifetime. This is in stark contrast to
the research-team wide collaboration typical when developing
methodology and experimental design. The individual nature of
writing research code is part of what makes pre-publication code
review so unlikely, but even more critical. Although code review
has a place in the formal peer-review process and post-publication,
one of the most important places for code review to take place is
before publication.

To achieve this, there must be a culture of peer code review
among research teams. One of the most effective methods by which
researchers can establish a culture of peer code review in research
labs or among colleagues is by setting up a code review group. Here,
we draw on our experience building a code review club (which we set
up in collaboration with the Society for Open, Reliable, and Trans-
parent Ecology and Evolutionary Biology, SORTEE) to present tips
for establishing this type of community. In particular, we focus on
advice for removing the barriers people have towards sharing their
code and receiving feedback; be these due to a lack of time and in-
centive, a lack of technical knowledge and unclear workflows, or due
to social pressures and the fear of being judged by peers (Gomes
etal., 2022).

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


https://choosealicense.com/licenses/

1352

IVIMEY-COOK ET AL.

JOURNAL OF Evqutionary Bioloqy

4.1 | Encourage collaboration from the start of
a project

Code review can begin as early as the first initiation of a project and
play a role beyond publication; it is useful to keep continuous code
collaboration at all stages of a manuscript. Collaboration can be fa-
cilitated through various code-sharing platforms, such as GitHub
where users can submit and comment on pull requests (Braga
et al., 2023). At SORTEE, we established a peer-review group and
used GitHub issues to summarize discussion of an individual's code
during an interactive zoom session (see https://github.com/SORTE
E/peer-code-review/issues/8 for an example including a summary).
However, it is important to find a method of facilitating code review

that works for your group.

4.2 | Set clear goals for the review

Setting out what you want to achieve with each code review session
is particularly important when it comes to organizing peer-review
meetings. Is the focus on general learning and improving readabil-
ity or is it to error-check and scrutinize the reproducibility of your
code? Having a clear structure and goal for each peer-review ses-
sion is important in order to focus comments and advice to address
the precise reason for review. Similarly, unless the aim of a code re-
view is to evaluate different analytical options, it would be better
to leave methodological questions aside to ensure code review is

streamlined.

4.3 | Normalize coding errors and establish a
judgement-free environment

Code review volunteers often feel very anxious about showing code
that may have errors. It is therefore vital to normalize the existence
of errors and highlight that perfection is never possible. It is also use-
ful to stress that there is no such thing as bad code (Barnes, 2010)
and there are usually multiple ways to approach the same problem
(Botvinik-Nezer et al., 2020; Silberzahn et al., 2018). One of the most
important statements for peer code review is that there is no sin-
gle way to code. It is important for code review not to get bogged
down by modifying or homogenizing style; as long as code is read-
able, then coding diversity should be encouraged. It is important to
create a relaxed environment where people can learn and correct
mistakes without judgement or fear of failure and everyone in the

peer-review group should have a chance to contribute and speak.

4.4 | Carefully consider group size

Usually, a smaller group is a friendly starting point for peer code re-
view because it allows people to feel more comfortable speaking
up and participating. Small peer-review groups (potentially even

one-to-one) can better facilitate peer-to-peer learning and a more
focused review of code. However, there are also times when larger
groups are more effective, such as having wider discussions on gen-
eral themes and tips. It is worth considering the aims in establishing
the group to help guide the ideal size. For instance, if your goal is
to facilitate more general discussions, then a big group size is more
likely to enable this. However, if your goal is to enable more focused
review of code, then perhaps it is better to reduce the size of the

peer-review group for this purpose.

4.5 | Consider the incentives

Code review, outside of paper submission and the formal peer-
review process, can have a large impact on an individual's project,
from error checking, to validation of appropriate statistical analyses.
This then poses the question: what incentives should reviewers of
code get? If deemed appropriate, the reviewer could be acknowl-
edged using the MeRIT (Method Reporting with Initials for Trans-
parency) system (Nakagawa et al., 2023), ‘e.g., J.L.P. ran a linear
mixed model with a Gaussian error distribution. Code was checked
by E.I.C.. In some circumstances, it may even be appropriate for the
reviewer to obtain co-authorship of the paper, if the review funda-
mentally altered the project and subsequent paper. For instance, a
situation may arise where a code reviewer(s) finds a major coding
error which, when fixed after highlighting and reproducing the issue
to the author(s), alters the subsequent results and conclusions of the
manuscript. Ultimately, incentives should be relative to the impact of
the reviewer on the project.

5 | DURING PUBLICATION: FORMAL
CODE REVIEW

One of the most crucial aspects of code review can take place during
the formal peer-review process. This is where reviewers are able to
carefully follow and understand the logic of analyses, much like the
flow of writing from the introduction to the discussion of a paper
(Powers & Hampton, 2019). In some journals, such as The Royal So-
ciety (‘Data sharing and mining | Royal Society’, 2023), Behavioural
Ecology and Sociobiology (Bakker & Traniello, 2020), and The Amer-
ican Naturalist (Bolnick, 2022) both code and data are requested
for review at from the submission stage (although, based on our
experience, this is not enforced). In some cases, such as in Journal
of Open Source Software, the entire process of formal peer review,
including that of code and manuscript is hosted on GitHub and im-
plemented via GitHub issues (see https://github.com/openjournals/
joss-reviews/issues for several useful examples). This, as Fernandez-
Juricic (2021) points out, has several benefits. For authors, provid-
ing code during peer review could lead to an increase in the quality
of the manuscript, and for reviewers, available code allows for a far
deeper insight into the manuscript as there is a clearer link between
experimental methodology and statistical analysis (the First R; code

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


https://github.com/SORTEE/peer-code-review/issues/8
https://github.com/SORTEE/peer-code-review/issues/8
https://github.com/openjournals/joss-reviews/issues
https://github.com/openjournals/joss-reviews/issues

IVIMEY-COOK ET AL.

1353

as ‘Reported’). These benefits are substantial and could ultimately
contribute to the adoption of code review during the publication
process by journals.

However, beyond the availability of code during submission,
there are numerous other hurdles before effective and in-depth code
review can be reasonably formalized as part of the peer-review pro-
cess. One of the most pressing issues is finding suitable individuals
to review code given there is already a lack of willing reviewers in the
current system. It is reasonable to expect reviewers to check that
code is as reported, but anything more in depth could take up the
time of already overworked academics, who may not necessarily have
the exact expertise needed to check other people's code. Reviewers
could be asked to state if they are competent to review the code is
as reported, and the journal could ensure that at least one reviewer
has checked the code. Another vital issue is how to provide code
and data during peer review within a double-blind peer-review sys-
tem (which has been shown to significantly reduce peer-review bias;
see Fox et al., 2023). There are several solutions to this. Anonymized
data and code could be submitted directly to the journal during re-
view (e.g., as a zip file). Alternatively, the anonymized data and code
could be uploaded to repositories such as figshare, the Open Science
Framework (OSF), GitHub or Dryad (although we note the latter may
not be freely available). These repositories allow the authors to pro-
vide an anonymized link for peer review (see also https://methods-
blog.com/2023/08/23/double-anonymous-peer-review-frequently
-asked-questions/ for useful links to repositories that enable double-
blinding). While there are still issues that need to be fully considered
before any kind of extended code review becomes a standard part of
the peer-review process, the mandatory provision of code for peer
review alongside the explicit expectation that at least one reviewer
checks the code matches the reported methodology (i.e., Is the code
as reported?) would make a strong start in shifting publication culture

and increasing the reliability of published research.

6 | POST-PUBLICATION: REVIEWING
CODE AFTER PUBLICATION

Reviewing code post-publication is another facet of code review
that has been much less discussed. Although it does not prevent
publication of incorrect results, it does enable checking if code is
indeed adhering to the R's listed above (Figure 1). The initial ques-
tion is ‘has all code used to produce the results been made avail-
able’? An increasing number of journals are now requesting code
be shared alongside scientific articles (Culina et al., 2020), such
as in supplemental materials or by linking to an online repository.
This then allows for any open and shared code to be checked and
verified alongside methods section statements (Light et al., 2014;
Stodden, 2011). Unfortunately, unlike data, code is a lot less likely
to be made available regardless of these mandatory journal poli-
cies. As Figure 2 from Culina et al. (2020) shows, although the
number of journals that possesses a mandatory code rule is in-
creasing (from 15% in 2015 to 79% in 2020) the number of articles

JournaL of Evolutionary Biology o

that actually provide open code is still around 27% (although this
number varies considerably among journals). This suggests that
not many authors are adhering to this policy, which is an impedi-
ment to computational reproducibility (Culina et al., 2020). How-
ever, there is hope to be found here. As Culina et al. (2020) have
shown, journals requiring code to be shared are increasing in num-
ber yearly, and as a field, we already have improved substantially
(Jenkins et al., 2023; Mislan et al., 2016). In some cases, journals
have implemented far stricter (and rightly so) data and code re-
quirements along with assigning corresponding data editors (Bol-
nick, 2022). However, the first necessary step is for all journals to
make it a requirement for both code and data to be present from
the very start of the submission stage (Fernandez-Juricic, 2021;
Powers & Hampton, 2019). But what happens if the code is not
available? In this case, the main option is to reach out to the corre-
sponding author (or perhaps the journal itself) and ask if the code
could be made available; similar to data being made available ‘upon
reasonable request’.

The next part is relevant to the previous section above (‘What
should code review evaluate?’). If you find that the code associated
with a manuscript does not adhere to any of the ‘R's listed above,
then the first step is to contact the corresponding author (or if the
paper uses the MeRIT system (Nakagawa et al., 2023), the person
who actually conducted the analysis). This could be in the form of
a GitHub issue if there is a repository for the code or an email (see
Figure 3). If there is indeed an error in code, and it is not due to dif-
ferences in software version (e.g., differences in R and package ver-
sions) or due to inherent stochasticity (e.g., simulations or MCMC
sampling), then the authors should be given a chance to contact the
journal themselves to highlight and correct their mistakes. For in-
stance, as per American Naturalist's stance (Bolnick, 2022) authors
who contact the journal to correct code or data errors will not be
penalized and corrections are encouraged (when warranted).

However, in cases where updated results would alter the narra-
tive of a published paper, corrections may be more difficult to ad-
dress without newer methods of documenting changes. Publication
versioning or ‘living’ documents may present a solid first step in such
a scenario (Kane & Amin, 2023). By encouraging post-publication
code review, we can both decrease the proliferation of coding errors

and also increase the reliability of published science.

7 | CONCLUDING REMARKS

In this brief overview, we have provided a basic set of guidelines
for peer code review, recommendations for producing reviewable
code, and considerations for how it should be adopted at every level
of research throughout the publication process. The principles and
advice listed here should form a baseline for code review that should
be improved upon. We hope that this encourages coders at all levels
to try and promote more reproducible, transparent, and open coding
practices. In addition, we hope that this provides a primer to start a
code reviewing club of your own.

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


https://methodsblog.com/2023/08/23/double-anonymous-peer-review-frequently-asked-questions/
https://methodsblog.com/2023/08/23/double-anonymous-peer-review-frequently-asked-questions/
https://methodsblog.com/2023/08/23/double-anonymous-peer-review-frequently-asked-questions/

1354

IVIMEY-COOK ET AL.

JOURNAL OF Evqutionary Bioloqy

FIGURE 3 Anexample peer code
review flowchart that can occur post-
publication. Figure design by J.L.P and

Is code available?
E.I.C.

1—Yes
Yes:
Does the code match the
methods?

-

—

Contact the authors or
journal directly.

Contact the authors or
journal directly.
Does the script run?
— _NOﬁ
Go through the script
until the error is found.
Yes l
Is the error simple to fix?

No

Does code produce the *
appropriate output?
N Report bug as a
GitHub issue or contact
the author directly.
I Report bug as a
Yes GitHub issue or contact
the author directly.
Does the output match the
results?
Yes No
The code has been
successfully checked Contact ﬂ’led?lf:\um or
and has passed. Jjournal directly.

AUTHOR CONTRIBUTIONS

Edward R. lvimey-Cook: Conceptualization (equal); project admin-
istration (equal); supervision (equal); writing - original draft (lead);
writing - review and editing (lead). Joel L. Pick: Writing - original
draft (equal); writing - review and editing (equal). Kevin R. Bairos-
Novak: Writing - original draft (equal); writing - review and edit-
ing (equal). Antica Culina: Writing - original draft (equal); writing
- review and editing (equal). Elliot Gould: Writing - original draft
(equal); writing - review and editing (equal). Matthew Grainger:
Writing - original draft (equal); writing - review and editing
(equal). Benjamin M. Marshall: Writing - original draft (equal);
writing - review and editing (equal). David Moreau: Writing - orig-
inal draft (equal); writing - review and editing (equal). Matthieu
Paquet: Writing - original draft (equal); writing - review and edit-
ing (equal). Raphaél Royauté: Writing - original draft (equal); writ-
ing - review and editing (equal). Alfredo Sanchez-Téjar: Writing
- original draft (equal); writing - review and editing (equal). Inés
Silva: Writing - original draft (equal); writing - review and edit-
ing (equal). Saras M. Windecker: Conceptualization (lead); project

administration (equal); supervision (equal); writing - original draft

(lead); writing - review and editing (lead).

ACKNOWLEDGEMENTS

This work began during workshops at the 2021 and 2022 annual con-
ferences of the Society for Open, Reliable, and Transparent Ecology
and Evolutionary biology (SORTEE) run by SMW and ERI-C (in 2022).
We also would like to acknowledge Fonti Kar for her help with or-
ganizing and delivering the 2021 workshop. This work was partially
funded by the Center of Advanced Systems Understanding (CASUS),
which is financed by Germany's Federal Ministry of Education and
Research (BMBF) and by the Saxon Ministry for Science, Culture and
Tourism (SMWK) with tax funds on the basis of the budget approved
by the Saxon State Parliament. We also thank Corina Logan, Serena
Caplins, the PREreview group (Gracielle Higino, Varina Crisfield, Mo-
bina Gholamhosseini, Katherine Hébert, and Tanya Strydom), and one
anonymous reviewer for thoughtful comments on the manuscript.
We thank Melina de Souza Leite for allowing us to use their GitHub
issue as an example of SORTEE peer code review.

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod



IVIMEY-COOK ET AL.

1355

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://
www.webofscience.com/api/gateway/wos/peer-review/10.1111/
jeb.14230.

DATA AVAILABILITY STATEMENT
No data is present in the manuscript.

ORCID
Edward R. lvimey-Cook "= https://orcid.org/0000-0003-4910-0443
Joel L. Pick "= https://orcid.org/0000-0002-6295-3742

Kevin R. Bairos-Novak " https://orcid.org/0000-0002-0152-1452
https://orcid.org/0000-0003-2910-8085
https://orcid.org/0000-0002-6585-538X
https://orcid.org/0000-0001-8426-6495
Benjamin M. Marshall " https://orcid.org/0000-0001-9554-0605
https://orcid.org/0000-0002-1957-1941
https://orcid.org/0000-0003-1182-2299
https://orcid.org/0000-0002-5837-633X
Alfredo Sdnchez-Téjar " https://orcid.org/0000-0002-2886-0649
https://orcid.org/0000-0003-4850-6193
Saras M. Windecker " https://orcid.org/0000-0002-4870-8353

Antica Culina
Elliot Gould
Matthew Grainger

David Moreau
Matthieu Paquet
Raphaél Royauté

Inés Silva

REFERENCES

Alston, J. M., & Rick, J. A. (2021). A Beginner's guide to conducting repro-
ducible research. Bulletin of the Ecological Society of America, 102, 1-14.

Archmiller, A. A., Johnson, A. D., Nolan, J., Edwards, M., Elliott, L. H.,
Ferguson, J. M., lannarilli, F., Vélez, J., Vitense, K., Johnson, D. H.,
& Fieberg, J. (2020). Computational reproducibility in the wildlife
Society's flagship journals. The Journal of Wildlife Management, 84,
1012-1017.

Badampudi, D., Britto, R., & Unterkalmsteiner, M. (2019). Modern code
reviews - Preliminary results of a systematic mapping study. In
Proceedings of the evaluation and assessment on software engineer-
ing, EASE ‘19 (pp. 340-345). Association for Computing Machinery.

Bakker, T. C. M., & Traniello, J. F. A. (2020). Ensuring data access, trans-
parency, and preservation: Mandatory data deposition for behavioral
ecology and sociobiology. Behavioral Ecology and Sociobiology, 74, 132.

Barnes, N. (2010). Publish your computer code: It is good enough. Nature,
467,753.

Blischak, J. D., Carbonetto, P., & Stephens, M. (2019). Creating and shar-
ing reproducible research code the workflowr way. F1000Research,
8, 1749.

Boettiger, C. (2015). An introduction to Docker for reproducible re-
search. ACM SIGOPS Operating Systems Review, 49, 71-79.

Boettiger, C. (2017). Generating CodeMeta Metadata for R Packages.
The Journal of Open Source Software, 2, 454.

Bolnick, D. (2022). EIC update: American naturalist policy on data and code
archiving. Available at: http://comments.amnat.org/2022/09/eic-
update-american-naturalist-policy.html

Bolnick, D. I., & Paull, J. S. (2009). Morphological and dietary differences
between individuals are weakly but positively correlated within a
population of threespine stickleback. Evolutionary Ecology Research,
11,1217-1233.

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,
Johannesson, M., Kirchler, M., lwanir, R., Mumford, J. A., Adcock, R.

JournaL of Evolutionary Biology o

A., Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S.,
Barilari, M., Bault, N., Beaton, D., Beitner, J., ... Schonberg, T. (2020).
Variability in the analysis of a single neuroimaging dataset by many
teams. Nature, 582, 84-88.

Braga, P. H. P, Hébert, K., Hudgins, E. J., Scott, E. R., Edwards, B. P. M.,
Sanchez Reyes, L. L., Grainger, M. J., Foroughirad, V., Hillemann,
F., Binley, A. D., Brookson, C. B., Gaynor, K. M., Shafiei Sabet, S.,
Glincan, A., Weierbach, H., Gomes, D. G. E., & Crystal-Ornelas,
R. (2023). Not just for programmers: How GitHub can accelerate
collaborative and reproducible research in ecology and evolution.
Methods in Ecology and Evolution, 14, 1-17.

Budd, J. M., Sievert, M. E., & Schultz, T. R. (1998). Phenomena of retrac-
tion: reasons for retraction and citations to the publications. JAMA,
280(3), 296-297.

Chure, G. (2022). Gchure/reproducible_research: A template repository for
how | Structure My Scientific Research, GitHub. Available at: https://
github.com/gchure/reproducible_research

Cooper, N., & Hsing, P. Y. (2017). A guide to reproducible code in ecology
and evolution, Technical report. British Ecological Society.

Culina, A, van den Berg, I., Evans, S., & Sanchez-Téjar, A. (2020). Low
availability of code in ecology: A call for urgent action. PLoS Biology,
18, e3000763.

Errington, T. M., Denis, A., Perfito, N., lorns, E., & Nosek, B. A. (2021).
Challenges for assessing replicability in preclinical cancer biology.
elife, 10, e67995.

Eustace, S. (2023). Poetry: Python dependency management and packaging
made easy.

Feldroy, A. (2022). Cookiecutter: A command-line utility that creates proj-
ects from project templates, e.g. creating a Python package project
from a Python package project template.

Fernandez-Juricic, E. (2021). Why sharing data and code during peer re-
view can enhance behavioral ecology research. Behavioral Ecology
and Sociobiology, 75, 103.

Filazzola, A., & Lortie, C. (2022). A call for clean code to effectively com-
municate science. Methods in Ecology and Evolution, 13, 2119-2128.

Fox, C. W., Meyer, J., & Aimé, E. (2023). Double-blind peer review af-
fects reviewer ratings and editor decisions at an ecology journal.
Functional Ecology, 37, 1144-1157.

Gomes, D. G. E., Pottier, P, Crystal-Ornelas, R., Hudgins, E. J,,
Foroughirad, V., Sanchez-Reyes, L. L., Turba, R., Martinez, P. A.,
Moreau, D., Bertram, M. G., Smout, C. A., & Gaynor, K. M. (2022).
Why don't we share data and code? Perceived barriers and bene-
fits to public archiving practices. Proceedings of the Royal Society B:
Biological Sciences, 289, 20221113.

Goodman, S. N., Fanelli, D., & loannidis, J. P. A. (2016). What does re-
search reproducibility mean? Science Translational Medicine, 8,
341psl2.

Hardwicke, T. E., Bohn, M., MacDonald, K., Hembacher, E., Nuijten, M.
B., Peloquin, B. N., de Mayo, B. E., Long, B., Yoon, E. J., & Frank,
M. C. (2021). Analytic reproducibility in articles receiving open
data badges at the journal psychological science: An observational
study. Royal Society Open Science, 8, 201494.

Hennessy, E. A., Acabchuk, R. L., Arnold, P. A, Dunn, A. G,, Foo, Y.
Z., Johnson, B. T., Geange, S. R., Haddaway, N. R., Nakagawa, S.,
Mapanga, W., Mengersen, K., Page, M. J., Sdnchez-Téjar, A., Welch,
V., & McGuinness, L. A. (2022). Ensuring prevention science re-
search is synthesis-ready for immediate and lasting scientific im-
pact. Prevention Science, 23, 809-820.

Huijgen, R., Boekholdt, S. M., Arsenault, B. J., Bao, W., Davaine, J.-M., Tabet,
F., Petrides, F., Rye, K. A, DeMicco, D. A., Barter, P. J., Kastelein, J. J.
P., & Lambert, G. (2012). Plasma PCSK9 levels and clinical outcomes
inthe TNT (treating to new targets) trial: A nested case-control study.
Journal of the American College of Cardiology, 59, 1778-1784.

Hunter-Zinck, H., de Siqueira, A. F., Vasquez, V. N., Barnes, R., & Martinez,
C. C. (2021). Ten simple rules on writing clean and reliable open-
source scientific software. PLoS Computational Biology, 17,1009481.

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/jeb.14230
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/jeb.14230
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/jeb.14230
https://orcid.org/0000-0003-4910-0443
https://orcid.org/0000-0003-4910-0443
https://orcid.org/0000-0002-6295-3742
https://orcid.org/0000-0002-6295-3742
https://orcid.org/0000-0002-0152-1452
https://orcid.org/0000-0002-0152-1452
https://orcid.org/0000-0003-2910-8085
https://orcid.org/0000-0003-2910-8085
https://orcid.org/0000-0002-6585-538X
https://orcid.org/0000-0002-6585-538X
https://orcid.org/0000-0001-8426-6495
https://orcid.org/0000-0001-8426-6495
https://orcid.org/0000-0001-9554-0605
https://orcid.org/0000-0001-9554-0605
https://orcid.org/0000-0002-1957-1941
https://orcid.org/0000-0002-1957-1941
https://orcid.org/0000-0003-1182-2299
https://orcid.org/0000-0003-1182-2299
https://orcid.org/0000-0002-5837-633X
https://orcid.org/0000-0002-5837-633X
https://orcid.org/0000-0002-2886-0649
https://orcid.org/0000-0002-2886-0649
https://orcid.org/0000-0003-4850-6193
https://orcid.org/0000-0003-4850-6193
https://orcid.org/0000-0002-4870-8353
https://orcid.org/0000-0002-4870-8353
http://comments.amnat.org/2022/09/eic-update-american-naturalist-policy.html
http://comments.amnat.org/2022/09/eic-update-american-naturalist-policy.html
https://github.com/gchure/reproducible_research
https://github.com/gchure/reproducible_research

1356

IVIMEY-COOK ET AL.

JOURNAL OF Evqutionary Bioloqy

Indriasari, T. D., Luxton-Reilly, A., & Denny, P. (2020). A review of peer
code review in higher education. ACM Transactions on Computing
Education, 20, 1-25.

Jenkins, G. B, Beckerman, A. P., Bellard, C., Benitez-Lépez, A, Ellison, A.
M., Foote, C. G., Hufton, A. L., Lashley, M. A,, Lortie, C. J.,, Ma, Z.,
Moore, A. J., Narum, S. R., Nilsson, J., O'Boyle, B., Provete, D. B.,
Razgour, O., Rieseberg, L., Riginos, C., Santini, L., ... Peres-Neto, P.
R. (2023). Reproducibility in ecology and evolution: Minimum stan-
dards for data and code. Ecology and Evolution, 13, €9961.

Kambouris, S., Wilkinson, D., Smith, E., & Fidler, F. (2023).
Computationally reproducing results from meta-analyses in
Ecology and Evolutionary Biology using shared code and data.
EcoEvoRxiv https://doi.org/10.32942/x2x602

Kane, A., & Amin, B. (2023). Amending the literature through version
control. Biology Letters, 19, 20220463.

Lai, J., Lortie, C. J., Muenchen, R. A., Yang, J., & Ma, K. (2019). Evaluating
the popularity of R in ecology. Ecosphere, 10, e02567.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin
Del Pico, E., Dominguez Del Angel, V., Van De Sandt, S., Ison, J.,
Martinez, P. A., Mcquilton, P., Valencia, A., Harrow, J., Psomopoulos,
F., Gelpi, J. L., Chue Hong, N., Goble, C., Capella-gutierrez, S., Groth,
P., & Dumontier, M. (2020). Towards FAIR principles for research
software. Data Science, 3, 37-59.

Landau, W. M. (2021). The targets R package: A dynamic make-like
function-oriented pipeline toolkit for reproducibility and high-
performance computing. Journal of Open Source Software, 6, 2959.

Light, R. P,, Polley, D. E., & Borner, K. (2014). Open data and open code
for big science of science studies. Scientometrics, 101, 1535-1551.

Lipow, M. (1982). Number of faults per line of code. IEEE Transactions on
Software Engineering, SE-8, 437-439.

Ma, C., & Chang, G. (2007). Retraction for Ma and Chang, structure of
the multidrug resistance efflux transporter EmrE from Escherichia
coli. Proceedings of the National Academy of Sciences, 104, 3668.

Miller, G. (2006). A Scientist's nightmare: Software problem leads to five
retractions. Science, 314, 1856-1857.

Minocher, R., Atmaca, S., Bavero, C., McElreath, R., & Beheim, B. (2021).
Estimating the reproducibility of social learning research published
between 1955 and 2018. Royal Society Open Science, 8, 210450.

Mislan, K. A. S., Heer, J. M., & White, E. P. (2016). Elevating the status of
code in ecology. Trends in Ecology & Evolution, 31, 4-7.

Miuiller, K. (2020). Here: A simpler way to find your files.

Miuiller, K., & Walthert, L. (2020). Styler: Non-invasive pretty printing of
R code. R Package Version 1.3.2.

Nakagawa, S., lvimey-Cook, E. R., Grainger, M. J,, O'Dea, R. E., Burke,
S., Drobniak, S. M., Gould, E., Macartney, E. L., Martinig, A. R,
Morrison, K., & Paquet, M. (2023). Method reporting with initials
for transparency (MeRIT) promotes more granularity and account-
ability for author contributions. Nature Communications, 14, 1788.

Nelson, S. D., & Schumann, J. (2004). What makes a code review trust-
worthy? In 37th Hawaii international conference on system sciences
(HICSS-37 2004), CD-ROM/Abstracts Proceedings, 5-8 January 2004,
Big Island, HI, USA. IEEE Computer Society.

Obels, P., Lakens, D., Coles, N. A., Gottfried, J., & Green, S. A. (2020).
Analysis of open data and computational reproducibility in regis-
tered reports in psychology. Advances in Methods and Practices in
Psychological Science, 3, 229-237.

Okken, B. (2022). Python testing with pytest. Pragmatic Bookshelf.

Peikert, A., & Brandmaier, A. M. (2021). A Reproducible Data Analysis
Workflow with R Markdown, Git, Make, and Docker. Quantitative
and Computational Methods in Behavioral Sciences, 1, e3763.

Peikert, A., van Lissa, C. J., & Brandmaier, A. M. (2021). Reproducible re-
search in R: A tutorial on how to do the same thing more than once.
Psychology, 3, 836-867.

Petersen, A. H., & Ekstram, C. T. (2019). dataMaid: Your assistant for
documenting supervised data quality screening in R. Journal of
Statistical Software, 90, 1-38.

Pipenv Maintainer Team. (2023). pipenv: Python development workflow for
humans.

Powers, S. M., & Hampton, S. E. (2019). Open science, reproducibility,
and transparency in ecology. Ecological Applications, 29, e01822.

Quintana, D. S. (2020). A synthetic dataset primer for the biobehavioural
sciences to promote reproducibility and hypothesis generation.
elife, 9, €53275.

Rocholl, J. C. (2022). Pycodestyle: Python style guide checker.

Royal Society. (2023). Data sharing and mining. https://royalsociety.org/
journals/ethics-policies/data-sharing-mining/

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey,
E., Bahnik, S., Bai, F.,, Bannard, C., Bonnier, E., Carlsson, R., Cheung,
F., Christensen, G., Clay, R., Craig, M. A, Dalla Rosa, A., Dam, L.,
Evans, M. H., Flores Cervantes, |., ... Nosek, B. A. (2018). Many
analysts, one data set: Making transparent how variations in an-
alytic choices affect results. Advances in Methods and Practices in
Psychological Science, 1, 337-356.

Simonsohn, U., & Gruson, H. (2023). groundhog: Version-control for CRAN,
GitHub, and GitLab packages.

Stodden, V. (2011). Trust your science? Open your data and code (pp. 21-
22). Amstat News.

Sweigart, A. (2020). Beyond the basic stuff with python: Best practices for
writing clean code. No Starch Press.

The Luigi Authors. (2023). luigi: Workflow mgmgt +task scheduling + de-
pendency resolution.

Tiwari, K., Kananathan, S., Roberts, M. G., Meyer, J. P., Sharif Shohan,
M. U., Xavier, A., Maire, M., Zyoud, A., Men, J., Ng, S., Nguyen,
T. V. N., Glont, M., Hermjakob, H., & Malik-Sheriff, R. S. (2021).
Reproducibility in systems biology modelling. Molecular Systems
Biology, 17, €9982.

Touchon, J. C., & McCoy, M. W. (2016). The mismatch between current
statistical practice and doctoral training in ecology. Ecosphere, 7,
e01394.

Ushey, K., McPherson, J., Cheng, J., Atkins, A., Allaire, J. J., & Allen, T.
(2022). Packrat: A dependency management system for projects and
their R package dependencies.

Ushey, K., & Wickham, H. (2023). renv: Project Environments. https://
github.com/rstudio/renv

van Gompel, M. (proycon@anaproy.nl). (2023). CodeMetaPy 2.5.1.
Humanities Cluster.

Wickham, H. (2011). Testthat: Get started with testing. The R Journal,
3, 5-10.

Williams, D., & Birkner, P.-C. (2020). Coding errors lead to unsupported
conclusions: A critique of Hofmann et al. (2015). Meta-Psychology, 4, 4.

SUPPORTING INFORMATION
Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: lvimey-Cook, E. R., Pick, J. L.,
Bairos-Novak, K. R., Culina, A., Gould, E., Grainger, M.,
Marshall, B. M., Moreau, D., Paquet, M., Royauté, R., Sdnchez-
Toéjar, A, Silva, |., & Windecker, S. M. (2023). Implementing
code review in the scientific workflow: Insights from ecology
and evolutionary biology. Journal of Evolutionary Biology, 36,
1347-1356. https://doi.org/10.1111/jeb.14230

GZ0Z JoquiaAoN (. U0 J8sn 000£6 Ad 92%/2G2/.¥€1/0L/9E/a101He/qal/woo dno-ojwapede//:sdly wody papeojumod


https://doi.org/10.32942/x2x602
https://royalsociety.org/journals/ethics-policies/data-sharing-mining/
https://royalsociety.org/journals/ethics-policies/data-sharing-mining/
https://github.com/rstudio/renv
https://github.com/rstudio/renv
mailto:proycon@anaproy.nl
https://doi.org/10.1111/jeb.14230

	Implementing code review in the scientific workflow: Insights from ecology and evolutionary biology
	Abstract
	1|INTRODUCTION
	2|WHAT SHOULD CODE REVIEW EVALUATE?
	2.1|Is the code as reported?
	2.2|Does the code run?
	2.3|Is the code reliable?
	2.4|Are the results reproducible?

	3|SETTING UP YOUR CODE FOR EFFECTIVE CODE REVIEW
	3.1|Project organization
	3.2|Project and input metadata
	3.3|Code readability
	3.4|Output reproducibility

	4|PRE-­PUBLICATION: SETTING UP A CODE REVIEW GROUP
	4.1|Encourage collaboration from the start of a project
	4.2|Set clear goals for the review
	4.3|Normalize coding errors and establish a judgement-­free environment
	4.4|Carefully consider group size
	4.5|Consider the incentives

	5|DURING PUBLICATION: FORMAL CODE REVIEW
	6|POST-­PUBLICATION: REVIEWING CODE AFTER PUBLICATION
	7|CONCLUDING REMARKS
	AUTHOR CONTRIBUTIONS
	ACKNO​WLE​DGE​MENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


