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Abstract

The impact of liquid-coated solid bodies onto porous substrates, or equivalently
the impact of porous bodies onto shallow water layers, are considered. This study
investigates the role of air cushioning in the pre-impact dynamics of a wet-
ted particle approaching a dry porous medium. By extending a shallow-water
air-cushioning model, we develop an asymptotic theory that couples flow in a
lubricating air layer, with an inviscid shallow water film, and with Darcy air
flow within the porous substrate. Two distinct regimes are identified, namely
shallow and intermediate-depth substrates. The formulated models are solved
numerically to determine the influence of substrates on impact pressure, bubble
formation, and air escape mechanisms. Numerical results, up to the instant of
liquid-substrate impact, reveal that at high porosity the substrate significantly
reduces the impact pressure and can suppress bubble entrapment. Permeability
is shown generally to hasten the liquid film’s descent to the top of the substrate
(so-called ‘touchdown’) as the air gap is closed but, perhaps most surprisingly,
porosity can delay touchdown in the regime of shallow porous layers. These find-
ings enhance our understanding of impact mechanics on porous media and offer
insights into practical applications such as de-icing technologies and controlled
particle adhesion in manufacturing processes.

Keywords: Wet particle, Impact, Air cushioning, Bubble capture, Air jet, Porous
substrate, Asymptotics.



1 Introduction

The impact of liquid-coated solid bodies or particles onto porous substrates, are sce-
narios of significant interest across many scientific and engineering disciplines. These
range from industrial applications such as inkjet printing [1], and soil erosion preven-
tion [2, 3] to natural processes like seed dispersal, and the fate of volcanic ash clouds
[4]. Another broad context is the action of a breaking sea wave, which can transport
a load of solid debris and air in temporary suspension. In coastal waters the sea wave
and its solid particles can violently impact a seawall, which is usually porous, causing
damaging collision forces. Including trapped air and wall-porosity continues to be a
modelling difficulty or an expensive addition to computing such flows. See [5].

Of particular motivation for the current work is aircraft icing in which, as an
aircraft flies through clouds, droplets and ice-particles —some of which may be partially
melted— impact upon the wings and engine intakes, causing ice growth and possibly a
loss of lift or control [6]. Meltwater may also coat the wing and this surface is subject
to the impact of naturally-occurring solid particles. Recent developments in de-icing
and anti-icing approaches have shifted from using traditional mechanical processes
(an inflatable boot at the leading edge of the wing that removes ice build up), and
thermal techniques (preventing formation or removing formed ice using hot engine air
or heater matts), to instead investigating engineered structured hydrophobic or ice-
phobic surfaces [7, 8]. The effectiveness of such surfaces has been demonstrated for low-
impact speeds, but it remains unclear at higher speeds where water can significantly
penetrate into the substrate. While much work on icing prediction has focused purely
on droplet impacts and subsequent splashing [9], there is an increasing awareness that
ice particles are also critical in understanding and predicting the threat [10, 11]. An
open question around ice particles, and of critical importance in engine intakes, is do
they rebound or stick to a surface after impact? [12].

Other scenarios include, for example, in food manufacture, when sprinkling moist
seeds (porous or not) onto edible substrates (porous or not) do they stick? It also
includes airborne ash. The very complicated fractal-like surface of sub-millimetre-scale
ash particles presents a region of flow which can be modelled as a porous layer — porous
to both air and any liquid film on an aircraft wing or other surface. The scientific
investigation of these phenomena includes the question: Does a particle fragment,
melt, bounce, or stick? Answers depend on the micro-mechanics of impact, which in
turn is sensitive to the size, depth and porosity of both the incident particle and the
substrate struck.

Air cushioning prior to liquid-solid impacts has been much studied in recent years,
with experimental investigations highlighting substantial deformation of a liquid sur-
face just prior to impact, and associated bubble entrapment (see [13-16] among a
wide body of literature). Various theoretical models, usually based on lubricating air
flow, have been proposed to explain deformation and predict bubble sizes, originating
with [17] for purely inviscid models and with [18] for study of viscous effects and then
extended to include surface tension ([19, 20]), compressibility effects [21, 22], porous
[23] and flexible substrates [24, 25], among many other features. Of particular inter-
est in the current study is how does air cushioning affect a solid particle (coated in a



thin liquid film) impacting onto a porous substrate? Marked improvements in high-
speed cameras have allowed much more detailed experimental investigations of liquid
impacts onto porous or structured substrates to be carried out [26-32]. In particular,
these studies demonstrate that porosity can significantly reduce splashing. However,
mathematical studies of such phenomena are comparatively sparse, leaving gaps in
understanding of the underlying mechanics.

The current work looks to extend the shallow-water cushioning model originally
detailed in [33], to include the influence of an unsaturated porous substrate on the
impact of liquid coated particles. This has significance on its own, as suggested above,
not least in the distinct behaviour identified when compared with droplet impact
cushioning. We also expect our work to lead to better theoretical descriptions and
physical insights into liquid impacts onto porous media, which are currently little
understood (see [34, 35]). In particular, the simpler model of a water layer presented
here (in contrast to the one for generic water-entry, or droplet impacts [23]) offers
perhaps greater opportunity to understand the transition between pre-impact cush-
ioning, post-impact spreading and splashing (see also [36] and Ross and Hicks [37]).
Although our focus in this paper is restricted to impact onto an unsaturated sub-
strate, it is important for understanding impacts onto both saturated and unsaturated
porous substrates, including modelling the longer-term mechanics and ultimate fate
of impacting particles.

Compared with collision between impermeable bodies, we make a case that intro-
ducing porosity to the surface of one body, can change dramatically all of the physical
measures of the impact, and some qualitative features too. Two examples from our
results: (i) we show a reduction in impact pressure due to the porosity of the substrate
and (ii) at high porosities, the substrate can allow air to flee from under the impact,
and so remove a bubble which would otherwise be caught between the liquid film and
the substrate.

Section 2 below describes in detail our modelling approach, building an
asymptotically-based theoretical model of the air-cushioning behaviour. The model
simultaneously couples shallow-water flow in the liquid film, with a lubricating air layer
in the gap, and with Darcy flow inside the porous substrate, all driven by the descend-
ing solid particle moving very close to and towards the substrate. Two distinct critical
limits of properties in the porous substrate are found. Section 3 presents numerical
solutions, and a discussion of the predicted behaviour in each of the two identified lim-
iting sub-cases, with particular attention focused on the differences between droplet
impact and the wetted-particle impacts considered here. Section 4 offers conclusions,
and a discussion of further extensions to our model.

2 Modelling and Theory

2.1 Modelling assumptions

The physical problem is two-dimensional and left-right symmetric in space. See figure
1. We describe the approach towards impact of a circular cylinder of radius R, coated
with a thin film of water to a uniform depth h*. The cylinder can stand for any rigid
body, and the radius R can stand for the radius of curvature of the body at its point of
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Fig. 1: Diagram showing the various domains of coupled flow. At top is a rigid solid
body descending vertically at constant speed. The body is coated in a thin liquid
film, whose lower boundary is an air-water interface. The air layer contains a viscous
lubrication flow and it in turn lies above a porous substrate whose horizontal upper
boundary is permeable to air entering from above or displaced air leaving from below.
The substrate’s lower boundary is also horizontal and impermeable.

first contact. The cylinder descends vertically at constant speed U, in atmospheric air,
towards a dry rigid porous substrate. The permeable top surface of the substrate is flat
and coincides with the horizontal x*-axis of coordinates, whose origin is at the centre
of incipient impact. The y*-axis points vertically up, through the cylinder’s centre, and
is the line of left-right symmetry of the model. Throughout, a star-superscript denotes
a variable in physical units. The air-porous substrate lies in the region —H* < y* < 0,
where H* is its uniform depth, y* = —H™ is its impermeable bed. The substrate is
horizontally unbounded: —oco < z* < co. We assume that the transient air-pressure
gradients generated by incipient impact allow us to use a Darcy air flow model in the
substrate. The substrate is uniform and isotropic, with constant permeability K.

We are interested in a region, with dimensions much shorter than R, close to the
origin where the impact pressures are high enough for the following to occur: (a)
deform the cylinder’s water-film surface; (b) push air into and out of the substrate; and
(c) displace air already inside the substrate. Prior to the air gap reaching this order of
thinness, the velocities and pressure generated in the air are not large enough to affect
the liquid flow to leading order due to a typically high viscosity ratio and density ratio
of the water and air. A time-dependent air-pressure field, p’(z*, y*,t*), is generated
by the cylinder as it nears the top of the substrate. The pressure rises dramatically
to ever larger magnitudes as time t* increases towards zero (the instant of liquid-solid
impact in vacuo). The local high pressure is associated with the vertical thinning of the
lubrication layer, and owing to conservation of mass there is a horizontal acceleration
of the air in the layer. The air layer lies between y* = F*(z*,¢*) > 0, and the top of
the substrate at y* = 0. The zone of high pressure occupies a small region near the



origin. We will find that the air-layer and water-layer pressure fields share the same
scalings for their magnitude (and their extent and duration).

Throughout, we use subscripts a,w and s to mark variables describing the air,
water and substrate flows, respectively.

For wetted ice or other solid particles, radius R is in the range 0.1lmm to 1cm.
The water film depth, h*, is typically only 1 — 3 per cent of R. For wetted ice we
envisage a temperature range of 0 — 20° C, a feature which affects the range of values
of viscosities of air and water. See section 2 and Appendix A3 of Korobkin et al. [33].

If ¢ denotes the speed of sound in the fluid, then we assume that the Mach numbers
U/c in air and water are both much less than unity. Typical impact speeds are in
the range 10 — 30m/s, making Ma < 0.1 for air and Ma < 0.002 for gas-bubble-free
water. A more appropriate measure of the importance of compressibility in the thin
air layer is the ratio of the pressure increase in the gas induced by the approaching
impact to the ambient gas pressure (see Mandre et al. [38] or [22] for example). By this
measure, compressibility may be significant at the higher end of our velocity range.
However, for simplicity we assume the gas is incompressible here, and as such we
exclude compressibility from our analysis of the Navier-Stokes equations for both the
air and water flows. Compressibility has been incorporated by Mandre et al. [38] and
Hicks and Purvis [22] for higher impact speeds into related models for deeper water.
If compressibility were included, we would expect the main difference to be slightly
smaller trapped bubble sizes.

The density ratio for air and water, p,/py, is so small that we can use it to help us
argue for a neglect of inertia at relevant points while establishing our model equations
below.

On the air-water interface, we neglect capillarity, owing to the large value of the
Bond number Bo = (p, — pa) R?g/7o for an interface between air and water of surface
tension coefficient 7y. For a body with radius of curvature R = 10~?m, we have
Bo = 50. In addition, our small time scale is not part of the Bond number’s definition
— during the brief time of impact any surface tension force has little time to move
the interface compared with other interfacial stresses which we include in the model.
We also assume that near the site of impact the water-surface’s slope is small, and
that its vertical displacement is a negligible fraction of both the depth of water and
the thickness of the air layer below it.

We neglect gravity as it is tiny compared with fluid-surface-particle accelerations
experienced over short times in this work. The Froude number Fr = U/+\/gL, is large
compared with unity, where L is the combined air-water layer thickness (much shorter
than R) and the acceleration due to gravity is g. Alone, gravity has little time to
displace the two fluids a significant distance.

The viscosity of the air is important and we show that the air flows as a lubrication
layer. The water flow has a Reynolds number, Re,, = UR/v (where v is the kinematic
viscosity), which lies in the range 700 to 20,000 for those particle sizes and speeds
that we treat. These large values of Re,, are in accord with our scaling and asymptotic
work below, needed to achieve a consistent balance among dominant terms and to be
able to neglect other relatively small terms. See Korobkin et al. [33].



The cylinder starts its descent from an elevation high enough above the substrate
for the air pressure to differ little, initially, from its uniform atmospheric value. But
as the cylinder falls and nears the substrate, the increasing air pressure has a growing
influence on the shape of the water surface coating the cylinder. As the cylinder-
substrate gap narrows, the air pressure rises locally under the cylinder. The three flow
regions of water, air, and the in-substrate air, all become intimately linked together.
It is from a description of this three-way interaction that we begin to establish in the
next section, ultimately, a set of coupled model equations, along with enough boundary
conditions and interfacial conditions to make this initial-value problem well posed.

2.2 Model equations

We begin deriving our model equations with a two-dimensional, incompressible form
of the Navier-Stokes equations, for air and water:

ul. + (u* - V)u* = —p* " 'Vp* + V3, (1)
V-u* =0, (2)

where the velocity components of air and water are:
u,* = (ui(x*, y*, t*), v (x*, y*, t*)) and u,* = (ul, (z*, y*, t*), vk (x*, y*,t*)), respec-
tively. On the air-water interface we have the usual kinematic condition and a

normal-stress condition:
vy = F +u), Fr on y*=F", (3)

F*x*aﬁ*

Dy, =Ds+ 0 on y*=F" (4)

3
(1 + (F*m*)2) 2
where the water surface under the lower half of the cylinder is y* = F*(a*,¢*). In
this work the Bond number is large enough for us to neglect capillarity. Equation (4)
simplifies to equality of pressures: see (11) below.

We assume the porous substrate is isotropic, has constant depth H* > 0 , and
contains two-dimensional unsteady Darcy flow whose velocity components are given
by us* = (u*s(a*,y*, t*),v*s(x*, y*,t*)), where we interpret the components as air
volume flux per unit cross-sectional area of substrate. These velocity components are
governed by

. K op*
w=-L2 (5)
K op
= T A 6
ta Oy* (6)

where K is the dimensional permeability of the medium in units of length-squared, and
the subscript s indicates variables in the substrate. We expect the pressure and velocity
to decay to zero in the far field; that is uf — 0 and p¥ — 0 as |z*| — oco. At the air-
substrate boundary we assume continuity of air pressure, p,*(x*,0,t*) = ps*(z*,0,t*),



and continuity of vertical velocity component v,*(z*,0,t*) = v*(x*,0,t*). Regarding
the horizontal velocities, from Beavers and Joseph [39], we have a condition linking
u) and its normal derivative:

K2 ou’
v Oy*

=ul — oul, (7)

where the dimensionless constant ~ is the Beavers-Joseph coefficient, which depends
on the medium’s pore size and material properties. Also the switch-constant ¢ is such
that: § = 1 corresponds to slip, and § = 0 corresponds to zero-slip on the substrate-
air interface. Saffman [40] concluded that u} is directly proportional to K, so that for
small K this term is negligible and one can then assume a zero-slip condition. But
here we consider K not necessarily small, and we proceed with the full condition (7).

In summary we have the following dimensional equations and boundary conditions:

ul. 4+ (u* - V)u' = —p*'Vp* + V2’ in both the air and water, (8)
V-u" =0 in both the air and water, (9)
vy, = FL +uy Fl. ony* =F*, (10)
P = Da ony* = F", (11)
Uy = Uy, and vl =) ony*=F", (12)
R+ h*
F*(x*,t*)—>h*+R—Ut*—([R+h*]2—x*2)% for t* <<—%7 (13)
K op:
e —-H*<y<0 14
US ,ua ax* — y — ’ ( )
K op:
vi=——=P  _pgr<y<o, (15)
fa Oy
pa*<x*’07t*) :ps*(x*707t*) Ony:07 (16)
v (2%,0,t) = vs" (2*,0,t") on y =0, (17)
K2 ou?
< =, —ou; on y* =0, 18
v Oy (9
V(2" —H,t*) =0 ony* =—H, (19)
u",ps*,pat — 0 as |z*| = oo. (20)

Next, we simplify the equations by scaling the variables, then neglecting relatively
small terms, so making a dimensionless model.

2.3 Non-dimensionalisation

There are many physical parameters in model equations (8-20). So, to make analytical
progress, we next non-dimensionalise the relations to help establish which important
terms balance, and identify the relatively small terms which we can neglect.

First, the velocity scale U drives the flows and induces below the wetted cylinder
an air velocity which is much faster horizontally than vertically.



Second, the length scales in the air are eR horizontally and e?R vertically, where
parameter € : 0 < € < 1 is found explicitly below. Here, ¢2R is the scale of height of
the air gap when the pressures are high enough to deform the liquid-air interface, and
to force air into the substrate. We define a dimensionless water thickness by writing
h* = BRh(z,t) where h = O(1) and § < 1. The scaling of water depth we choose
here is the physically interesting case, first studied by Korobkin et al. [33], where the
water behaves as a shallow water layer. The two other alternative choices of water
layer thickness are: (a) if h* < eR which reduces to solid-solid impact; (b), if A* > eR
then the flow would be, to leading order, like a droplet (e.g. of radius R), impacting a
porous substrate, with no influence from the solid cylinder, as discussed by Hicks and
Purvis [23]).

A third consideration for scaling is that in the air layer the significant time scale
is EZR. We defer the correct choice of pressure scaling, in terms of a power of € or
B, by using dimensional factors P, and P,, for which we find expressions below.
Consequently, the variables in the water and air layers are scaled by:

°R
(uyy, vl Do ™ y* t* F*) = <;Uuw,va,’Pwpw,eRz,ﬂRy, EUt,eQRF> , (21)

2

(ul,vr, ph xc*, y* t*, F*) = <61Uua, Uvq, Papa, €Rz, € Ry, %t, EQRF> . (22)
where P,, and P, are dimensional constants that depend on € and or § in ways to be
found. The scalings in the water reflect the as yet unspecified thickness of the water
layer. Incidentally, the air’s horizontal acceleration scale equals the ratio of scales of
horizontal velocity to time: U2R™'e™3 — the smallness of € makes this much greater
than acceleration due to gravity.

2.3.1 Equations modelling shallow water flow

The balance of terms that we achieve is supported by the lengthy discussion in section
2.2 and appendix 3 of Korobkin et al. [33]. Substitution of the scalings (21) into the
governing equations (8) and (9) for water gives

62 Pw —1 62
Uyt + E (uwuwz + Uwuwy) = _Bmpwx + Re,, (meg + BQ”“’W) ) (23)
62 62 Pw — 62
Vs + E (uwvwm + Uwva) = —Empwy + Rewl <'Uwzm + 621)wa> ) (24)
U g + Vwy = Oa (25)

where the water Reynolds number Re,, = p,UR/ i, > 1. In order to keep a leading
order balance here, and to match with the flow in the air described below, we are
required to take the pressure scale as

Pw = Uprﬁ_l' (26)



In order to obtain the leading order shallow water behaviour in the liquid film, this
also fixes the size of our water film 3 as we also need in (23) that €271 <« 1 and
Re,'e?872 < 1. These are equivalent to the pair of double inequalities: €2 < 3 and
Re@l/ e < B < €. Under these assumptions, along with Re, > 1, the nonlinear
inertial terms and the viscous terms in the governing equations (23) and (24) are
negligible.

Assuming that we are within this regime, we obtain for the water flow the linear
shallow-water equations:

Uwt = ~Pwg> Pwy = 0, Ung + Vuwy = 0. (27)

We have the usual boundary conditions on the water-air interface, namely kinematic
condition (10) and normal-stress condition (11). The normal-stresses must balance so
P, = Pw. The kinematic condition is

vy, = Fii 4+, F). on y* = F*(z",t%), (28)
where y* = F™* is the air-water interface at the bottom of the shallow water layer.
Integrating the continuity equation in (10) with respect to y* across the shallow water
layer (applying the kinematic boundary condition and an impermeability condition on
the wall of the body), noting that w, is independent of y*, we obtain:

«1F* *

[Uw]S* = BRuwz»M (29)
where SR is the average depth of the water layer and y* = S* is the impermeable
solid surface of the cylinder where v}, = —U. Substituting in the kinematic condition
(28) and rearranging we have:

F +U = BRu’,  —ulFr. (30)

W g%

Applying the scales (21) we obtain at leading order:
Fi 41 =1y, on y = F(x,t). (31)

We differentiate (31) with respect to ¢ and substitute the horizontal component of (27)
to obtain:

Fyy = —pu,, on y = F(x,t). (32)
We next show how these model equations for water flow couple with a lubrication flow
in the air layer below it.

2.3.2 Equations for the air

The terms of equations (8,9) for the air layer are scaled using (22), and become:

2 4

€Uy Poc* vy

(uat + UgUq, + 'Uauay) = - 2paaC + (
Vg PaVe U Re,,

Uq,, + Ua,,) (33)



Pa P. PalVa 1
i =" _— — , 34
. (’Uat + UqVq, + Uavay) 2 Da, + v e <vam + = vayy> (34)

Uq, + Vq, = 0. (35)

From equation (33), in order to include the final term in a balance with the pressure

gradient at leading order, we must have %%Vw = Ri . We also know from (26) that

Po = Puw = U?p,~ L. These relations give us
1 et
Rey, ta B’
fixing the small-valued parameter € in terms of other parameters. It also clarifies the

validity of the model for § with the inequalities becoming as follows, written in terms
of physical variables:

(36)

2 1
Va ( w 3 La 3
UR(ua> <r< (URpw> ' 37

These agree with the relationship quoted in Korobkin et al. [33], and can always be
satisfied for Re,, > 1.

Consequently, in (34) the pressure coefficient (O(e™*)) is much greater than the
O(€e™?) coefficient of v,,, in the final term (and in the other terms). As e formally
tends to zero, only the pressure-gradient term remains. So this term must vanish:
Pa, = 0; hence the air-layer pressure depends at most on x and ¢. From now on we
write pg = pa(z,t).

We next revisit (33) to check that the leading order terms balance and the other
terms are negligible. Using (36, 26) we have

£ Fa (Uat + Ugtg, + vauay) = —pa, + Euq,, + Uq,, - (38)

As discussed and exploited by Korobkin et al. [33] (see p371, p388 and their Appendix
3), for air and water the density ratio p,/p, = O(1073), is much smaller than typical
€ = 0(1072). Therefore we can neglect the inertia terms of LHS of (38), compared
with the lubrication-theory balance between the horizontal pressure gradient and the
viscous shear force u,,,. The remaining term, €%u,,, is also negligible.

Condition (36) tells us the regime of values of physical constants in which we must
sit. For air and water p,/p, € [50,100] over the temperature range [0,20° C], and
for fresh water p,/p, = O(1073). We consider U to be in the range 10 to 20 ms~!
and R to be in the interval [107%,1072m]. At the lowest end of the range of values
of €, we find it takes the value e = 0.004 (large, fast particles); at the highest end
€ = €5 = 0.03 (small, slow particles). We must dismiss the low end of the range of
€ because the Mach number of horizontal velocity component of flow, M, = U/eic,
exceeds unity; at the high end U/es = 30m/s, corresponding to a small Mach number
of Ma = 0.08. The range of admissible € is narrow but embraces a wide range of values
of the physical variables, owing to the nonlinear dependence on e.

10



Now we choose a mid-range value of ¢ = 1072 and 8 = 1073 so that €2 < 8 < e.
If we also suppose Re = O(10%) then we satisfy (37). The pressure scale has the high
value P, = P, = 103 Nm~? which is 1000 bar, over a timescale of 10~ seconds.

The above is in accord with assuming a large value of the water Reynolds number
dictated by (37): Rey = Be *papgyt = O(103).

We now take the leading-order terms of equations (38,35), to make a lubrication
model for the air flow:

Pa, — Ua,, = 07 (39)
Uq, + Va, =0, (40)

in the region 0 <y < F(z,t) in which p, = p,(x,t). These equations must be solved
subject to a no-slip condition of u, = 0 at y = F (due to scalings (21,22) on the
material-particle interface condition (12)), alongside boundary conditions at y = 0,
which will be discussed below for different substrates.

This completes the model in the air layer above the substrate and below the cylin-
der’s wetting film. However, the flow in the air layer is coupled with the flow across
the air-substrate interface. In the next section we look at the air flow into, out of, and
inside the dry porous substrate.

2.3.3 Model Equations for the Porous Substrate

We need to link the velocity and pressure in the air layer, at the air-substrate interface.
At the bottom of the substrate is an impermeable base. Depending on the depth of
the porous substrate, different dynamics can be found. We will model two distinct flow
regimes: a shallow substrate and an intermediate-depth substrate. In order to develop
the model and complete the boundary conditions for the air lubrication layer, we
demonstrate that the thickness of the porous layer is important. We consider two main
regimes of layer thickness. First, we have a shallow substrate of dimensionless depth
Hyg,, where H* = €2RHy, — the substrate’s depth is similar to the thickness of the air
layer above it. Second, we treat an intermediate-depth regime, where H* = eRH;y,
is comparable to the horizontal extent of the air layer, and where the significant
horizontal and vertical dimensions in the substrate flow domain have the same order
of magnitude. Also the influence of the impermeable bed is significant in that both
velocity components must be included. This second regime can also be extended to
treat a third (special) case of a deep porous substrate, H;, — oo — a situation in
which the impermeable bed is too far down to affect the flow over the short timescales
considered here.

I - Thin porous layer

We have assumed Darcy air flow in the substrate, equations (14,15). The flow is driven
by balancing the normal component of stress at the substrate’s surface, which gives
us a boundary condition at y = 0:

pa(x*,0,t") = pi(x”, t%). (41)

11



Therefore we must scale the substrate pressure p¥ in the same way as p} to maintain
this balance. We also have conservation of (incompressible) air mass in the substrate
(35), which in components is

ou*  ovf
= 5 =0. 42
ox* + dy* 0 (42)

We first consider a thin porous layer, whose thickness H* is comparable to the air
layer thickness €2 R. As such, we scale the substrate variables as:

R
(u:avz?p:ax*7y*>t*7H*) = (e_lUusvU’US>B_1U2ppr76R$762Rya62Ut762RHsh) )
(43)

where Hg, is the dimensionless depth of the substrate domain of flow: —Hy, <y < 0.
These scalings lead to

Oug n Ovg
Oox Ay

—0. (44)

For brevity, we define an effective dimensionless permeability, k:

pwUK
k= , 45
BRuq (45)
so that the scaled velocity components become:
Ops
= == 46
Us oz’ ( )
k Ops

For a water layer on a cylinder of radius R € [1, 10] mm, impact speeds in the range
[1,10)ms~! and substrate permeability of K = 5 x 1072 m?, we find k lying in the
interval [0.4,200], but we focus on values of k ~ 1.

At the interface of the air layer and the porous substrate, the Beavers-Joseph
condition (7), scaled and rearranged, gives

k2 Oug
— = Uy — OUg on y=0. 48
< oy (48)

Substituting (46,47) into (44) we make a partial differential equation for p,(x, y,t):

&ps 1 9p,
il — 4
0x? €2 9y? 0, (49)

valid in the substrate. At the impermeable bottom of the porous layer vy = 0; therefore,

%’;j = 0 is the bed boundary condition for (49) on y = —Hg.

12



Motivated by the disparate orthogonal length scales in (49) and the approach
of Knox et al. [41], we express the substrate pressure in the following asymptotic
expansion:

ps(,y,t) = pa(z,t) + Ps(z,y,t) + O(e), (50)
which introduces a new function Ps. The form of (50) is chosen to ensure the leading-
order pressure matches that in the air layer. We need this so that the normal
stresses balance (equation (41)) and so that we have a small (O(e?)) correction term.
Substituting (50) into (49) we obtain:

Pp, ,0°P,  O*P, 9
= O . 1
0x? te 0x? + Oy? (%) (51)

At leading order, we have a relation inside the substrate linking Ps(z,y,t) with the
surface pressure p,(x,t) that drives the flow:

02 P, 0%pa
- = . 52
Oy? Ox? (52)
Noting that the right side of (52) is independent of y, we integrate (52) with respect to
y from y = — Hgy,. In doing this we use the bottom-impermeability boundary condition
(47):
OP, Vg
=——=0 = —Hg,. 53
oy . on y sh (53)
From all this we deduce from (52) that in the substrate
oP, 8*pa
=— H . 54
=+ Ha) 5 (54)

Using this we re-write the Darcy-flow velocity components at the top of the substrate
in terms of the air-layer pressure, p,. At leading order we have expressions for the two
velocity components at y = 0:

Opa
s\, 7t =—k 5
us(x,0,1t) o (55)
0%pa
vs(,0,) = kHg 2 (56)

0x? "

Owing to (41,50) and integrating (54) with respect to y, we find the following
expression for pressure in the substrate:

2
e t) = palist) = & (4 Ha ) o () + O 57)

We can now use the expression of velocity in the substrate to complete the model
equations in the air layer and link together the unknowns p,(z,t) and air-water inter-
face position y = F(x,t) when the porous layer is shallow. As derived above, we start
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with (39, 40):

Pa, = Ua,,, (58>
Uq, + Vaq, =0 (59)

and follow lubrication theory. We integrate (58) with respect to y twice in the air layer,
applying Beavers-Joseph condition (48), and kinematic condition (31) at the air-water
interface, at which the horizontal velocity of the air is negligible, to arrive at:

(= F) (vF + k%) y + kEF + 2099) g,
2(7F+k%) E

(60)

Uqg =

We then integrate (40) with respect to y, from y = 0 to y = F using (60), and apply
the kinematic condition (31). We find:

OF 1 9 <7F4+4k5F3+6k7§F2 apa> (61)

ot 120z ~F + k2 Oz
To summarise, the coupled equations for shallow water impact with a porous substrate
of thickness Hg, and effective permeability & are (61) and

Ftt = —Pays- (62)

These are complemented by initial and boundary conditions. For large negative times
as t — —oo, we assume the liquid interface is initially undisturbed, so that F(z,t) =
22/2 — t, and that the air gap is initially wide enough that p,(x,t) = 0. We also
assume that far enough away from the narrowing gap, the water film and pressure
remain unchanged. Hence from (13) expanded in powers of z**/R? < 1) we have
F(z,t) — 22/2 — t and p4(x,t) — 0, as & — Foo. The principal unknowns of the
model in this shallow-substrate regime, consist of two self-contained coupled equations
for F(x,t),pa(z,t), and from these ps(x,t) and the velocity fields can be subsequently
found.

In anticipation of the discussion of our results we introduce further definitions here,
see figure 2 (left panels). For the entirety of our results discussion we will concentrate
solely on the right half of the symmetric domain with = > 0. Notice the water layer
deforms and descends as a lengthening ‘tongue’, and this tongue meets the substrate
at touchdown time ty. The horizontal air-volume flux is computed across a movable
vertical line segment x = [(¢) drawn from the lowest point of the tongue down to the
substrate at y = 0. The horizontal volume flux, HVF, is defined as

F(l,t)
HVF(t) = / uq(l,y, ) dy, (63)
0
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where y = F(I,t) is the position of the liquid’s lower surface. The vertical air-volume
flux, VVF, is also defined at the substrate’s upper boundary, y = 0, via

VVF(t) = — / " va(2,0,) dz, (64)

0

where x = [(t) is the position of the lowest point on the tongue.

We report in figure 10 that the two volume fluxes have similar magnitude while

growing in time towards their maximum values. Then, while the vertical flux contin-
ues to rise, the horizontal flux decays to zero at t = ty. (It’s a coincidence that the
two curves for HVF and VVF cross near ¢t = 0.) Physically, the incipient bubble of
free air loses gas in two distinct ways:
(i) air escapes horizontally under the tongue (and interacting with the tongue by allow-
ing it to ‘skate’ on top of the air-lubricating layer); and (ii) escaping air is pushed down
into the substrate, where it and the displaced air are constrained by the impermeable
bed to move to the right, under the tongue.

IT - Intermediate-depth porous substrate

For our second regime, we no longer restrict the substrate depth to be similar to the
water-layer depth. Instead, we treat a regime in which the depth is comparable to the
horizontal extent (eR) of the lubrication region. This is the next critical asymptotic
balance. As such we write scalings in the substrate as:

’R
(u:,v:,pz,m*,y*,t*,H*) = (UusaUvsvﬁ1U2pwpsveR1'76Ryv Gth,ERHm) 5 (65)

where H;j, is a new dimensionless depth of the intermediate-depth substrate. The
derivation of the air-layer equations is almost unchanged. However, we have a slightly
different boundary condition from the Beavers-Joseph condition (7) because the hori-
zontal velocity scale is now the same size as the vertical velocity scale. Upon applying
the scales, the air-substrate boundary condition, at y = 0, becomes:

é Oug
v Oy

= Uq, (66>

where k is defined in (45). (Factor 0 is absent from (66) because the term to which it
was attached is negligible compared to the dominant terms.) Thus we find:

(y — F) ((WF n k) y+ kF) Op.
2 (vF + k%) Oz

for 0<y<F(x,t). (67)

Ugq =

From the conservation of mass equation and by substituting in the Darcy veloci-
ties (5) and (6), we see that the substrate pressure must satisfy Laplace’s equation,
along with the following boundary conditions: pressure and vertical air velocities are
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continuous on the air-substrate interface and zero normal-velocity component on the
impermeable base. Thus we have:

V2ps(2,y,t) =0, (68)
ps(I,O,t) :pa(xvt)7 (69)

Ips
—k z,0,t) = vq(x,0,1), 70
2 (2.0.) = va(a,0,1) (70)
aaz;s (2, —Hip, t) = 0, (71)
ps — 0 as |z| — oo. (72)

This problem can be solved using complex analysis techniques. For brevity, the details
are in Appendix A. We obtain an integral equation for the unknown vertical velocity
in the porous layer, at the substrate surface:

1 o0 k:pa k:pa — x) + 2H;,v,

= V(a, t) (74)

We proceed from equation (67) in the same way as for a shallow substrate. However,
the vertical component of air velocity must satisfy (73) with vs(x,0,t) = V(x,t) say,
so we have the following equation from the air-layer theory:

F 1 F4 4 4k3 F3
9 19 (v + 4k 8pa>. -

ot Viz,t) + 12 Ox vF+kz Oz
This is coupled with equation (32). However, we now have an explicit dependence on
the vertical component of air velocity at the top of the substrate. In order to calculate
this we must first solve for the substrate pressure using (68)-(72). This yields a system
of coupled equations more complicated than for a shallow substrate.
In summary, the coupled system for a shallow-water layer and air impacting onto
an intermediate-depth porous substrate, of porosity k and depth Hj,, is:

OF 1 0 (~yF*+4k2F3 dp,
9 _ B 0 Bt R:
ot Viet)+ 12 0z < vF+k: Ox rER (76)
1 * kpag > k(€ —=x pag +2HinV (&, 1) .
vien = (e [ ) o
Ftt = —Pay, xr € R. (78)

As in the shallow-substrate regime, for large negative times we assume the liquid
interface is undisturbed so that F(x,t) = x2/2 — t, and that the air gap is initially
wide enough that p,(z,t) = 0. The principal unknowns of the model, in this regime,
are F(x,t),ps(x,y,t), pa(z,t) and from these the velocity fields can be found. There
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are three parameters: k, k'/2y~!, and Hi,. In the numerical investigation that follows
we fix vy, pick 6 = 1, and vary k and Hj,.

In order to investigate the limiting case of an infinitely deep porous layer, we simply
take the limit as H;, — oo in (73) to obtain the effect of the substrate on the air. The
second integral of (73) then tends to zero, leaving just the Hilbert-transform term:

V(e t) = ﬁ][oc Pag_je. (79)

T) o &—2

With this simpler expression, we recover an explicit relation between the vertical
component of air velocity on the substrate-air interface and the air-layer pressure.
Therefore we need not solve anything separately inside the substrate. The system
becomes:

10 (yF*+4k3F30p,\  k [*° Dag
Fr=—— [ T2 0 z de; 80
k 1283:( vF+kz Oz +F]{m§_x & (80)
Ftt = _pamz S R (81)

This completes the theory. In the next section we discuss a numerical method used
to solve the model’s equations, and then present results from our computations.

3 Numerical Method and Results

3.1 Numerical solution

Our problem of interest has now been reduced to two main cases. First, the thin porous
layer is governed by coupled equations (61) and (62), along with initial conditions on
the interface y = F'(x,t) and the air pressure p,(x,t). We also require that the air-
water interface is undisturbed far from the site of impact, so that F(z,t) ~ 22/2 —t
and p,(x,t) — 0 as x — £oo. In this regime, the flow inside the substrate is essentially
passive, driven by the pressure-continuity condition at y = 0. We are left with a
pair of coupled equations to solve first, and then the induced substrate flow can be
calculated subsequently. The numerical method we adopted to compute the solution
uses a fourth-order finite-difference scheme to discretise the two differential equations.
The solution was found by iterating F' and p, at each time step, with (62) firstly
giving an updated interface position F, and (61) then updating the pressure, p,. At
each time step, it was found that fewer than five iterations are needed to achieve a
numerically converged solution, within a typical relative error of 1075, The grid size
and time-step size were typically dz = 0.016 and §t = 1073, with smaller values used
as a numerical check. We truncated the domain in the far-field when applying the
boundary conditions. It was found that = € [—32, 32] was a wide enough truncation to
no longer affect the solutions and encompass the decay towards zero in the air pressure
with increasing distance from the line of symmetry. Finally, the computations were
started at an early enough time, t = —25; this value was checked to ensure solutions
were independent of the choice of start time.

17



For the second regime with intermediate-depth porous substrate governed by (76)-
(78), our approach was more elaborate. Attempting the same discretisation approach
detailed above, the numerics either failed to converge or required prohibitively small
grid sizes. Instead, a Fast Fourier Transform method for solving this system was
adopted which proved to be stable, and close in computational speed to our method
for the first regime. We introduce the discrete Fourier expansions of the unknown
functions p,, F' and v, defined by:

n=1
.732 N
F = F,(t)e T"
(2.1) = 5 t+n§:j1 MOCE (83)
N
Vi, t) =) Va(t)e o, (84)
n=1

where x = £L are the limits of the truncated computational domain. From (73) we
have that:

apa(i t) 3pa(£ t)

1 o] ook
V(x,t)zﬂ(P.V./oo 5_ dg/ +4H2d§

o0 2HinV t

with the help of Gradshteyn and Ryzhik [42] to find exact expressions for the integrals,
we substitute the Fourier expansions (82)-(84) and write V;, explicitly in terms of Py:

k‘ If —2Hiyn|m —=Hipnim
A |Z|7TpnJr |Z|7T€ tplnin il (86)
(1475 ) v, = (—WL’“T v We”ii""'”) P,. (87)

Note that we have kept these expansions general at this stage to allow for non-
symmetric impacts, although in what follows we exploit the fact that F' and p, are
even functions of z to reduce the number of unknown coefficients. At each time step
we calculate the set of P, from the values at the previous time step, then use relation
(78) to update F,:

n?m?

Foy = ?Pna (88)

where we discretise F},;; using standard fourth-order finite differences. We use these to
update V;, via (87) and exploit relation (76) to update the pressure. We also monitor
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the relative error between successive iterations. We iterate this process until it con-
verges to a relative error of less than & 10~%. Typically we truncate to N = 2001 terms
in each series to give accurate resolution, and less than five iterations were needed at
each time step to reach convergence. Full details of the discretisation and methods
used can be found in [36].

In the next two sections we present results for the two regimes’ theories: shallow-
and intermediate-depth substrates.

3.2 Shallow porous substrate results:

In this section we present results using the shallow-substrate theory of section 2.3.3
part I, in which the substrate has depth H* = 2 RHy,. We begin with the reference
case of a wholly impermeable substrate (k = 0). Then we show results for a selection
of pairs of values of porosity k and shallow-substrate depth Hg,. At the end we draw
together some trends in the influence of porosity on the results, and contrast them
with what happens for an impermeable plate.

We describe results for the right-half only = > 0 of the symmetrical domain. We
plot in dimensionless units the free surface, pressure and pressure gradients. Typically,
a sequence of profiles is shown at unequally-separated instants in time. The computa-
tions start at t = —25 when the wetted body is far above the substrate, and we show
developments at times just before impact. We continue computing until the interface
is due to meet the substrate at a touchdown time denoted t = ty. In our results tg > 0
due to the pressurised air-layer pushing up against the water film on the cylinder and
so delaying the arrival of the interface at y = 0 which in the absence of air cushioning
isat t = 0. When a bubble is captured in the interval between z = +ry, its half-width
is rp. For short, we say a bubble has radius ry.

As a test of our numerical methods and to show a baseline of results with which
to compare the porous substrates that follow, we first present the solution for impact
onto an impermeable substrate. Figure 2(a) shows the evolution of the free surface and
pressure distribution for approach to impact against an impermeable plate at y = 0
(porosity k = 0). The interface descends and changes shape, capturing a pocket of
air against the plate to form a bubble of radius r, = 3.0 to two significant figures.
Considering only the right half of the domain, a tongue of liquid descends to define
the right-hand edge of the bubble and the tip of the tongue will reach the plate
at a positive instant ¢ = tg. Physically, touchdown is delayed due to film-spreading
and air-cushioning. The touchdown time is approximately ¢, = 0.33. Figure 3 shows
the separation distance from the lowest point of the tongue down to the plate, as a
function of time. In vacuo the trajectory shows constant speed of descent and is the
dashed straight line of slope —1. The plot shows an early deceleration (a reduction in
gradient), followed by an acceleration (high gradient) towards the time of impact at the
touchdown time t = ty. This slowing-down then speeding-up happens during the short
time when the interface is very close to the plate. As the interface descends it sharpens
into a falling tongue of water, as shown in figure 2(a),(b) left panels. Figure 2(a),(b)
right panels, show the simultaneous pressure distribution. The pressure is largest inside
the air pocket, with a global maximum pressure at x = 0, and spatially it declines
steeply near the tongue. Just before touchdown, an elevated pressure spike appears
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Frea surtace, fix)

(a) Free-surface and pressure profiles for increasing ¢ as the water layer approaches the sub-
strate. A dashed curve corresponds to t = 0, the touchdown time in the absence of air
cushioning. Profiles are drawn at times ¢t = —10, —8, —6, —4, —2,0 then ¢t = 0.25. Touchdown
occurs at tg = 0.36.

Free surface, )

(b) As (a) detail of free surface tongue and nearby pressure close to touchdown. Profiles at
t =0,0.025,0.05,0.075, ...,0.325 before touchdown at t = tg = 0.36.

Fig. 2: Free-surface and pressure profiles during the approach to impact with an
impermeable substrate. A dashed curve marks ¢ = 0 (touchdown time without air
cushioning) .

close to the touchdown position. First identified in Korobkin et al. [33] which our
results recreate, this differs from reported behaviours during impact of air-cushioned
liquid droplets and deep-water layers, where more distinctive local pressure peaks
appear near touchdown.
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Fig. 3: Impermeable substrate: separation distance between the lowest point on the
interface and the top of the substrate, plotted as a function of time. The dashed line
shows the separation distance for an un-cushioned impact.

Shallow-substrate results are relatively insensitive to changes in Hg, because the
theory rests on scalings which make the influence of the substrate’s bed strong every-
where — the air flow in the substrate is constrained to being predominantly horizontal.
So we fix the value Hg, = 4 and, through the following examples, increase k from
k = 0 (impermeable, discussed above), up to k = 4.

What happens if the substrate is made slightly permeable? See figure 4. With
k = 0.25 and Hg}, = 4, the free surface captures a smaller bubble than the impermeable
plate. The bubble radius is about r, = 2.9. The bubble is smaller owing to a loss of
air pushed into the substrate and then away to the sides. Since the air in the model
is incompressible, it also exits the substrate, primarily at the tongue and just outside
the bubble, as an air jet. Equation (56) shows the link between p,,, and vs: Figure 4
(lower right panel) shows a distinct and growing maximum in p,,,, which marks the
air jet. The descending water tongue is slowed down by the air pressure. Its touchdown
time tg = 1.6 is about four times later than for the impermeable-plate, ¢ty = 0.33.
Overall, the air pressure is reduced in the presence of substrate porosity: the maximum
value of p, occurs at x = 0, with magnitude of about 1.6, and still rising at the last
time computed.

What happens to the results if the substrate is made more permeable? See figure
5. With £ = 2 and Hg, = 4, the interface has caught a narrower and thinner bubble.
This tongue is the most slowed-down of the examples computed, and its lowest point

21



25

Free surface, f(x,t)
Pressure, p

Position, x

Pasition, x Paosition, x

Fig. 4: Free-surface and pressures profiles for £k = 0.25 and Hy, = 4, touch-
down time tg = 1.6. A dashed curve marks ¢ = 0. Profiles drawn at times t =
—10,—-8,—6,—4, —2,0 then ¢t = 0,0.25,0.50, ..., 1.25, 1.50.

makes touchdown time tg = 2.1 (see fig 7), (about six times the value of ty = 0.36
for k = 0). Pressure is reduced further by this increase in permeability: the maximum
value occurs at x = 0, where p, = 0.6 (and rising) at the last time computed.

See figure 6. A further increase in permeability to k& = 4 and Hg, = 4, gives the
results shown in figure 6. Now there is no bubble-capture; the pressure maximum
is only 0.4, and the touchdown time is reduced to about ty3 = 1.2. This marks a
reduced deceleration of the point of first contact on the interface, descending along
the centreline. The air flows mainly horizontally in both the air layer and inside the
substrate. These flows are also slower due to the reduced pressure gradients shown in
panels 2,3.4 of figure 6.
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Fig. 5: Free-surface and pressures profiles for k = 2 and Hg, = 4, touchdown time
to = 2.1. A dashed curve marks ¢t = 0. Profiles drawn at times t = —10, -8, ..., —2,0
then ¢ = 0,0.25,0.50, ..., 2.0.

See figures 7 and 8. We now pause to synthesise these shallow-substrate results
across the two-dimensional parameter space of k, Hg,. In figure 7 we have contours of
constant (marked) touchdown time, . Note the ridge of elevated values in the middle-
right part of the plot where ¢y > 2.2. For a fixed value of Hgy,, if we increase k from
zero vertically up the plot, we find a local maximum in ¢q for some value of k. From the
results discussed above ty can be as high as 2.3, for £ = 1.4 and Hg, = 4. The shallow-
substrate theory resolves a region of parameter space where ¢y has a local maximum
as a function of k and fixed Hgy, > 1.5. This supplements the results reported by Hicks
and Purvis [23]; with an intermediate-depth theory and fixed depth, they report a
monotone decrease in ty with increasing k.
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Fig. 6: Free-surface and pressures profiles for k¥ = 4 and Hg, = 4, touchdown time
to = 1.2. Profiles drawn at times t = —10,—8, ..., —2,0 then ¢t = 0,0.2,0.4, ..., 1.0.

Figure 8 shows a contour plot of the bubble’s radius, r, as a function of k and
Hyy, for the same region of parameter space. There is an unbounded region in the top-
right corner of the plot, where kHg, > 10, in which there is no bubble. This region
corresponds to conditions in which the air layer can most easily escape the descending
water film, either to the sides or into and along the substrate. In eq. (56) the vertical
component of air velocity into the substrate, is directly proportional to kHg,. The
presence or absence of a bubble has a strong influence on what will happen next to
the water impacting onto and into the substrate.

The boundary between bubble and no-bubble occurs at about kHg, = 10, according
to our shallow-substrate computations. In the remaining region of the plot, a bubble is
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Fig. 7: Contours of touchdown time, to, as a function of k (vertical axis) and Hy,.

caught when approximately kHg, < 10. The bubble radius r} is increased by reducing
k: the radius increases up to a maximum r, = 3.0 for the impermeable plate, k = 0.

Figure 9 shows another synthesis of results: the trajectory of the lowest free-surface
point. A broad conclusion is that (at a fixed depth of substrate) the effects of increasing
k are to relax the acceleration and deceleration of the approaching air-water interface.
The air finds it ever easier to escape into the pores of the substrate and or to move
sideways away from the descending tongue.

We also discuss plots of the air’s volume fluxes. See figure 10. The horizontal
volume flux, HVF, is defined as that crossing a geometrical vertical line segment,
drawn from the lowest point on the tongue to the top of the substrate (see equation
(63)). Calculations start when we begin to have a distinct tongue. As the descending
minimum point of the tongue moves to the right, = () also moves to the right. The
curve shows that as time increases HVF increases from zero to a positive maximum,
with flow to the right; after which HVF declines. Also plotted in figure 10 is the
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Fig. 8: Contours of bubble radius, 7, as a function of k (vertical axis) and Hgy,.

vertically downward volume flux, VVF, computed at the top of the substrate between
the centreline and the tongue’s position (see equation (64)) . VVF measures the volume
of air entering the substrate in the interval [0, (¢)]. The main contribution comes from
the falling tongue pushing air into the substrate. The curve shows a monotone increase
over time, from zero to a maximum whose magnitude is similar to that of HVF. Both
HVF and VVF have been computed for k¥ = 0 (impermeable) and k = 0.5 in shallow
substrate Hg, = 4. By considering a slightly porous substrate, we see that the main
contribution to the total flux (also plotted) is from the horizontal flux during the
early approach to touchdown. But as the film approaches impact, the air pressure in
the bubble continues to rise, allowing more air to be forced vertically down into the
substrate, and the horizontal flux declines. Increasing the porosity makes VVF become
greater than HVF much earlier.

Overall, under the water tongue there is a horizontal air flow to the right, caused
by the bubble (on the left side of the tongue) shrinking in volume due to the water
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Fig. 9: In the shallow porous regime, separation distance between lowest point on free
surface and top of substrate: plots for various values of k and fixed Hg;, = 4.

layer pushing down on it. Some air escapes under the tongue, then off to the right,
and some air penetrates the substrate.

3.3 Intermediate-depth porous substrate results:

Here the results come from theory section 2.3.3 part II, in which the substrate depth
is H* = eRHj,. Unlike the previous section, we now have a fully two-dimensional
velocity field inside the substrate. The air is free to move in a region which is as
deep as it is broad, and whose length-scale, eR, equals the width of the zone of high
air pressure for the wetted cylinder approaching the substrate. Figures 11 - 14 show
various profiles, exploring significant parts of the k, Hy, parameter space.

First, what happens if the substrate is made slightly permeable? Does the greater
depth scale of the theory make a significant change in the results? Let k£ = 0.25 and we
set H;y, = 0.25, which is already physically deeper than the cases of shallow substrate
presented in the previous section 3.2. The top left panel in Figure 11 shows that the
free surface captures a wide bubble. The tongue is slowed down by the air pressure
and then accelerates into touchdown. It will make contact with the substrate at time
to = 1.1, (about triple the value of ¢y = 0.33 for k = 0). The pressure in figure 11,

27



1 T T
Porous - total flux
— — —Porous - horizontal flux

09 |
————— Porous - flux into substrate

Impemeable - horizontal flux

Flux out of bubble

0 0.5 1 15 2 25 3
Horizontal position of freesurface minimum

Fig. 10: For the shallow porous model: plots of horizontal volume flux, vertical volume
flux out of the bubble, and total flux, as functions of z-coordinate of the minimum of
the liquid surface. Drawn for Hg, = 4 and k& = 0.5. Horizontal flux for impermeable
substrate, k = 0, is also shown.

top right panel, is reduced by the substrate: its maximum p, occurs at z = 0, and has
magnitude about 2.3 and still rising at the last time computed. The vertical velocity
distribution at y = 0 is sensitive to the second-z-derivative of pressure, and pg,.,
changes sign either side of the descending tongue. Near the approaching touchdown
point, x = 2.9, air enters the substrate just inside the bubble and exits both at the
tongue and just outside the bubble. The nearby maximum vertical velocities are as
follows. First, into the substrate v = —0.4; second, out of the substrate vy, = 0.35.
These maximal speeds are similar, reflecting the notion that incompressible air entering
the substrate immediately displaces other air from inside the substrate, forcing the
latter to exit. This exit flow from the substrate is so narrow that we can call it an
‘air jet’ (or ‘air splash’). Its speed, at the jet root, is still growing at the last time
computed.

For the next case we increase the permeability to £ = 1 and maintain the depth at
H;, = 1. See figure 12. The bubble radius r;, = 2.8. The pressure’s spatial maximum
is about 2.2 and still rising. The vertical velocity at y = 0 is about £0.21. Touchdown
occurs at tp = 1.3.

Next we increase the permeability and reduce the depth: £k = 2 and H;, = 0.25.
See figure 13. The bubble radius r, = 2.6. The still rising pressure maximum is about
1.7. The vertical velocity v, at y = 0 is about +0.9. Touchdown occurs at a later time
of tp = 1.4. Equation (56) shows the link between p,,, and vs: the lower right panel
shows a distinct and growing maximum in p,,,, which marks the air jet.
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Fig. 11: Intermediate depth porous model. Free surface, pressure and pressure gra-
dients for k = 0.25 and H;, = 0.25. The dashed curve is at ¢ = 0. Profiles drawn at
times t = —6, —4, —2,0 then t = 0,0.25,0.50, ..., 1.0. Touchdown occurs at tyg = 1.1.

Finally, we treat an infinitely deep substrate using a suitably adapted numerical
method: £k = 0.1 and H;, — o0, as shown in figure 15. During its descent the tongue
moves to the right, eventually capturing a bubble of radius r, about 3.0. The growing
pressure reaches a maximum of about 1.9. The vertical velocity at y = 0 ranges
between about —1 (downward flow) and about 0.4 (upward-exiting flow). Touchdown
occurs at tg = 1.1 . One contribution to the increase in g is the initial height of that
part of the free surface which forms a tongue and descends onto the substrate. For
touchdown to occur at the centre, z = 0, we expect tg to have a smaller value than for
a bubble-capturing tongue, because the tongue needs more time to descend further to
reach the substrate.
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Fig. 12: Intermediate depth porous model. Free surface, pressure and pressure gradi-
ents for k = 1 and H;, = 0.25. The dashed curve is at t = 0. Profiles drawn at times
t=—6,—4,—2,0 then t = 0,0.25, ..., 1.25. Touchdown is at t; = 1.3.

4 Conclusions and further work

4.1 Conclusions

We established in section 2 a mathematical model comprising symmetric two-
dimensional coupled flows (water-film, air-layer and air-porous substrate) forced by the
descent of a wetted cylinder towards impact with a porous solid substrate. One novel
feature of our work is in identifying an asymptotic scaling for the model variables which
achieves a consistent balance between the chief terms in the complicated full equations
of motion and boundary conditions. We solve the coupled equations numerically with
two methods: a fourth-order finite-differences scheme, and a Fourier-representation
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Fig. 13: Intermediate depth porous model. Free surface, pressure and pressure gradi-
ents for k = 2 and H;, = 0.25. The dashed curve is at ¢ = 0. Profiles drawn at times
t=—6,—4,—2,0 then t =0,0.2,0.4, ..., 1.2, where to = 1.4.

(spectral) method, truncated at 2001 terms. Both methods work efficiently in that
they are robust, quickly converge, and produce consistent accurate estimates of the
unique solution in each case.

The model has two independent dimensionless parameters: a substrate porosity
k and a substrate depth H (either Hg, or Hi,). Regions of k, H space are explored
through case-by-case examples. The water film either captures no bubble, or one
bubble, with an associated air flow forced into, and displaced out of, the substrate.
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Fig. 14: Intermediate-depth substrates: separation distances versus time. Note accel-
eration of the film interface into touchdown. Plotted for 4 pairs of k and Hjy,.

In k, Hg, space, a contour plot of the half-width (radius) 7, of the bubble, makes
clear the regime of bubble capture and confirms a maximum value of 7, for imper-
meable substrate. Figure 8 shows two regions: at lower-left bubbles are formed; at
upper-right is a blank region of no-bubble.

Figure 7 is a second contour plot in k, Hy, space, of touchdown time ¢y (when the
water surface meets the substrate top) and this was explored. At fixed depth, as k rises
from zero, ty increases to a local maximum and then decreases. This is a new finding
and contrasts with a monotone decreasing ¢, reported by Hicks and Purvis [23].

Computational results report examples of an impermeable, shallow (relative to the
width of the impact zone), intermediate-depth and deep substrate. When an air bubble
occurs, it is captured between the water film and substrate by two symmetrically
placed tongues of water that descend faster than the rest of the initially parabolic
water surface. It is the lowest point of the tongues that first meets the substrate to
define a touchdown time, ty. The spatial and temporal details of the tongues are well
resolved by the method.

Another new feature of the results is the presence of air-jets. Air pushed into the
substrate can also exit as a jet, especially when Hgy, is small enough. The vertical
component of velocity at the substrate surface, vs(z,0,t), is greatest in a narrow -
interval that lies from under the tongue to just inside the bubble, where air is forced
in. And air exits most quickly just outside the bubble as an air-jet. The maximum
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Fig. 15: Infinite-depth substrate: profiles for £k = 0.1. Profiles drawn at times ¢t =
—6,—4,—2,0 then t = 0,0.25,0.50, ..., 1.0, where t; = 1.1.

magnitude of vs(z,0,t) is no more than the particle’s speed of descent, and absolutely
small everywhere else.

When there is no bubble, the air is free enough to either go into the substrate
or flee to the sides, with little evidence of any air jet. Under these circumstances the
air-layer pressure is so low that it hardly affects the shape of the water surface, and
impedes very little its descent towards the substrate. Without a bubble, touchdown
occurs first at the centre of the impact zone.

Our model and results can equally well be interpreted for the descent towards
impact of a porous particle approaching the water surface of a liquid-film coating an
impermeable substrate. Such a scenario is closer to a food manufacturing setting; e.g.
porous seeds sprinkled onto the top of a moist solid foodstuff.
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4.2 Future research and open questions

We revisit the assumptions made in the modelling: (a) The high Bond number sug-
gested we neglect surface tension from the air-water interface. Including capillarity
and small pressure differences across the interface would not change our primary high-
pressure-scaling balance of constants P, = P,,. Indeed, using the FFT representation,
it is straightforward to include the curvature term of capillarity in the free-surface
shape. Preliminary computations show that the influence of capillarity is to delay the
arrival of the water tongue at the substrate and the right-hand tongue’s lower surface
can skate towards the right on top of a layer of high-pressure air. (b) Geometry: our
model is two-dimensional. An axisymmetric flow domain is more natural, e.g. for a
spherical ice-particle impact, see Hicks et al. [43]. (¢) Air compressibility: Hicks and
Purvis ([22]) have looked at this for impermeable substrates. (d) Symmetry: the inci-
dent particle could be impacting at an oblique angle away from approach along the
normal to the substrate. Moreton [36] showed that the approach must be close to hor-
izontal to see significant asymmetry in the pressure distribution for an impermeable
plate. (e) Substrate: Most real porous substrates are inhomogeneous and anisotropic.
Both of these can be accommodated within a Darcy flow model by making K into
a matrix of elements depending on position within the substrate. Pre-saturated sub-
strates are also of great practical interest, but offer a formidable challenge to model.
(f) Dirty liquid/gas — can micro-organisms and dust particles be driven into the sub-
strate? (g) Liquid viscosity: is there a regime in which the liquid film’s viscosity is
significant?

This work can supply consistent initial conditions for future modelling of the
impact of a water layer onto and into a substrate. Where will the free air-water
interface go as an advancing wetting front? What new conditions pertain inside the
substrate? We anticipate that each bubble computed in the present work, will strongly
affect the subsequent motion of the wetting front inside the substrate. Our approach
through modelling a very shallow substrate in section 2.3.2 part I, has many sim-
plifying advantages. Such a model could relegate the vertical velocity component to
satisfying the mass-continuity equation, and would allow us to predict a simple wet-
ting front whose right half advances to the right with a time-dependent depth-uniform
horizontal velocity, coupled to a pressure field that is primarily dependent on z. Film
impact into an intermediate-depth substrate (section 2.3.2 part IT) would be much
more difficult to model, owing to the fully two-dimensional, time-dependent velocity
field and its free-surface wetting front.

A major challenge remains describing the transition between pre-impact air cush-
ioning of the type described here, and post-impact liquid flow into the porous substrate
and the lateral spreading of a splash jet. An initial attempt at modelling the equiva-
lent post-impact behaviour using only an ansatz boundary condition was carried out
in Moreton, Purvis and Cooker [35]. Two important open questions are: how does air
cushioning continue to influence the liquid flow once touchdown has occurred, both
inside the substrate and in the lubrication film? And what is the longer term fate of
the air bubble?
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Appendix A Integral equation for the Darcy flow
in an intermediate-depth substrate

Here we present some complex analysis derivation of the integral equation for the

Darcy flow induced in the porous layer by the air layer pressure for the intermediate
depth case defined by (68-72).

y=20
z
. .

- S
3 y=—H|=
= -

y=—2H

(a) The field point, z, is inside the contour
D -

= =
= y=—Hl=
= -

y=—2H

(b) The field point, z, is on the contour on the real axis at z = x

Fig. A1l: Diagrams showing the contour of integration, I', around the porous layer
and its reflection in y = — H;, depending on where field point z lies.

We use an image system to solve Laplace’s equation in the substrate. We solve
it in a rectangular region of depth Hj,, with zero normal component of velocity at
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the base of the substrate (vs = 0 at y = —Hjy,), and air pressures equal at the air-
substrate interface. We reflect this rectangle in the base of the substrate and use
Cauchy’s integral formula to derive an integral equation for vs. Let complex variable
z = x + iy and we define complex-valued function w(z,t) by:

w(z,t) = kps,(2,t) + ivs(z,t). (A1)

Here w is analytic because kps,, and v, satisfy the Cauchy-Riemann relations. We next
use Cauchy’s integral formula with a contour of integration I' as shown in figure Al,
and defined as the perimeter of a rectangular region described anticlockwise, we have:

wat) = o § 20 (A2)

The contribution from integrals at * = oo are zero because, as we extend in the
horizontal direction the integrand tends to zero exponentially. Here we have different
forms of this contour integral depending on whether the field point z lies on I' or not.
If z lies strictly inside I' then

_ 1 “Fw(,t) > w(é )
w(z,t)m(/oo f—zd§+/oo§—2Hini—zd£>' (A3)

fz==x then we must deform I' around this point, as shown in figure Al. From
(A2) the factor 1 changes to 1, accommodating the contribution from the semicircular
indentation shown in the ﬁgure we have a principal-value integral from taking the
limit of the radius of this indentation to zero. For more details see Carrier et al. [44].

In (A3) we note that w is known on y = 0 and y = —2H;,, from the boundary
data: kp,, + ivs (and its complex-conjugate, due to reflection in the bed). We take
Im(z) = 0 because we are interested in the pressure and velocity at y = 0. So we have:

1 l’{:]oaerwg kp% ws) (€ — x + 2Hipni)
kpsfﬂvs—m(]{o e ———dé+ / VA dg). (A4)

Here we choose to take the imaginary part to obtain an integral relation between the
air velocity on the surface of the substrate and the pressure. (Taking the real part
leads to an equivalent expression without advantage.) This leaves the following integral
equation:

1 > kpq © k(& — x)pg _2HinUS(§7t)
) =2 (][oosgd“/_m G dg)' (42)
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