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Abstract—Spirometry is used for evaluating lung function, play-
ing a crucial role in assessing lung health and monitoring treat-
ment effectiveness. Numerous studies demonstrate the potential of
Machine Learning algorithms to match human experts in spirom-
etry classification, although most approaches depend on custom
data pre-processing and complex model architectures. Therefore,
we apply efficient Time Series (TS) classifiers to quickly and
computationally assure spirometry signal quality, enabling real-
time deployment. Seven classifiers were implemented to classify
spirometry curves as ‘Acceptable’ or ‘Not Acceptable’, with per-
formance referenced against results from similar studies. The best-
performing classifier was FreshPRINCE, a TS method combining
TSFresh feature extraction with Rotation Forest classifier. The
FreshPRINCE model achieved an accuracy of 0.9449, precision,
recall and F1 Score of 0.9745, 0.9586 and 0.9665, consistently
matching and sometimes outperforming more complex models.
These findings suggest models, such as FreshPRINCE, could
streamline spirometry analysis, reducing computational burden,
whilst maintaining classification performance.

Index Terms—spirometry, pulmonary function, machine learn-
ing, time series, classification

I. INTRODUCTION

Spirometry tests measure the flow and volume of air an indi-
vidual can exhale after maximal inspiration, displayed in Flow-
Volume and Volume-Time curves. It is predominantly used
to diagnose and manage pulmonary diseases. Traditionally,
qualified respiratory physiologists analyse spirometry results,
but this process is costly and time-consuming, limiting access
to testing. There is a healthcare need for rapid, reliable and
affordable community-based spirometry. With the rising global
burden of Chronic Respiratory Diseases (CRDs) and pres-
sure on healthcare systems, automating this process provides
an opportunity to improve diagnostic efficiency and patient
outcomes. Many healthcare professionals struggle with the
lack of diagnostic tools, leading to misdiagnosis or delayed
diagnoses and higher CRD mortality [1]. Widespread access
to spirometry and improved automated quality assurance could

reduce mortality by enabling earlier diagnosis and treatment
[2].

Machine Learning (ML) techniques offer new approaches to
analysing spirometry data, reducing the complexities inherent
in lung function testing. Classifying spirometry curve quality,
which requires expert knowledge, is prone to human error,
something ML can address. A recent study used pre-built
Convolutional Neural Networks (CNNs) to classify spirometry
curves into three categories: acceptable, early termination, and
non-acceptable results, with the VGG16 model achieving 0.939
accuracy but only 0.877 precision (proportion of all the positive
classifications that are actually positive) [3]. Other research,
such as Das et al. [4], used a custom CNN architecture, yielding
0.87 accuracy for acceptable curves, with a sensitivity of 0.90
(the ability to correctly identify positives) and specificity of
0.85 (the ability to correctly identify negatives [5]). Bonthada
et al. [6] used CNNs to detect and classify use-errors, achieving
0.94 accuracy with only 100 samples. This approach is valuable
for identifying patterns in spirometry errors (e.g. early termina-
tion of the breath, extra intake of breath or submaximal blow),
advancing data collection practices.

Another classification task for spirometry results is to clas-
sify an individual as having an obstructive or non-obstructive
condition. The former describes a disease of the airways in
which a patient struggles to get air out of the lungs such
as Chronic Obstructive Pulmonary Disease (COPD) and the
latter describes a condition with reduced lung volumes. A
2022 study uses supervised learning models to aid in this
classification task, achieving 0.837 accuracy using the Multi-
Layer Perceptron (MLP) model [7]. A different study, focussing
on distinguishing between healthy and COPD affected lungs
uses a fusion of ML techniques [8]. By combining a Support
Vector Machine (SVM) and K-Nearest Neighbours (KNN),
the model performs at a 0.94 accuracy rate and is able to
detect patterns in the data for both the ‘Normal’ and ‘Disorder’
classes.



Building on these ML innovations, Clinical Decision Support
Systems (CDSS) have emerged as a critical tool for leveraging
automated spirometry analysis in real-time clinical decision-
making. Amaral et al. [9] stressed the importance of combining
the use of these algorithms into CDSS as they can identify and
diagnose indistinguishable patterns in spirometry data that a
respiratory clinician may miss. It is clear that the use of this
technology is paramount in improving how spirometry data is
classified. Time Series (TS) classification offers unique advan-
tages in analysing spirometry data and has been successfully
applied in various contexts. It has been used to classify disease
types, as demonstrated by Mac et al. [10], and for predicting
COPD exacerbation, as shown by Xie et al. [11]. However, to
the best of our knowledge, limited research exists on using TS
classification to evaluate the acceptability of spirometry record-
ings, a crucial quality assurance step in spirometry testing. The
minimal research into TS-specific classification for spirometry
data has allowed us to experiment with models that have not
been used previously. Recent studies often focus on Deep
Learning (DL) techniques, custom architectures, and model
fusion, which frequently require significant data processing,
specialised feature extraction and require large datasets. In
contrast, our study aims to demonstrate that fast and powerful
TS models, which require significantly less data processing, can
achieve performance results that are comparable or superior to
those more complex and computationally intensive approaches.

The rest of this paper is organised as follows: Section II
explains and visualises the dataset. Section III describes the
study design. Section IV explains the results from our study,
with Section V discussing published studies as a benchmark
and how our results compare. Finally, Section VI concludes
the paper and discusses future research direction.

II. THE DATASET

The dataset that has been used within this study is a subset of
the TIPAL dataset. It is comprised of raw data extracted from
the Contec Handheld Bluetooth Spirometer SP80B (Contec
Qinhuangdao, Hebei Province, China) obtained from patients
with idiopathic pulmonary fibrosis as part of the TIPAL clincal
trial [12]. This clinical research, currently ongoing, is designed
to investigate how effective lansoprazole is for treating people
with Idiopathic Pulmonary Fibrosis (IPF). IPF is a type of
chronic and fibrotic Interstitial Lung Disease which destroys
the lung parenchyma (lung tissue), it is derived from unknown
causes and is severely lacking treatment avenues [13]. Treat-
ment with lansoprazole may reduce the progression of this
condition. The subset used for this research includes 98 patients
with a total of 3404 spirometry sessions collected between
August 2021 and March 2023. All patients that have taken part
in this study are aged 40 years or older and all have a diagnosis
of IPF, which was agreed upon by following the most up-to-
date international guidelines [14].

The dataset is comprised of sequential data (examples in
Figure 1). An initial preprocessing stage involved removing
erroneous data and each patient is given a unique ID, in order

to make them discernible from one another. A timestamp is then
used to distinguish the different days and times the recordings
were made. From the over 3400 entries a total of 15150
individual recordings are used for this study. Ethical approval
to use the data set was granted by the University of East Anglia,
Research Ethics Committee (reference ETH2223-1573).

Fig. 1. Examples of an acceptable curve (top) and not acceptable curve
(bottom), the latter contains two peaks possibly indicating the presence of
a cough. Flow is measured in litres per second (L/S) and Volume is measured
in litres (L).

III. STUDY DESIGN

The study focuses on using a variety of TS classifiers to build
models that can determine if individual spirometric recordings
are acceptable or not acceptable. This is the primary label given
to individual recordings within the same session for them to
be assessed in context. This label is provided using the 2019
American Thoracic Society (ATS) and European Respiratory
Society (ERS) Spirometry guidelines [15]. This is explained in
Section III-A. An example of the labelled Flow-Volume curves
can be seen in Figure 1, each one is a visualisation of a single
recording from a patient.

This study involves three main stages: training models
with default parameters, applying hyperparameter tuning, and
evaluating the optimal model using person-independent k-fold



cross-validation. Person independence ensures generalisability
by preventing training and testing on data from the same
individual.

A. Data Preprocessing and Labelling

Using the ATS/ERS standards outlined in their report [15],
and the key spirometric metrics from the dataset, each breath
was evaluated for acceptability. The two primary metrics used
for this evaluation are Forced Vital Capacity (FVC) and Forced
Expiratory Volume in the first second (FEV1). FVC measures
the total volume of air exhaled during a forced breath manoeu-
vre, while FEV1 quantifies the volume of air exhaled within
the first second. If both FVC and FEV1 met the acceptability
criteria, the breath was labelled as ‘Acceptable’. Conversely, if
the criteria were not met for either FVC, FEV1, or both, the
breath was labelled as ‘Not Acceptable’. While some breaths
labelled as ‘Not Acceptable’ may still have been usable, this
aspect was not explored during this study.

It is crucial to use ML to aid in labelling spirometry curves
as some of the ATS/ERS guidelines require experts to visually
evaluate specific criteria that cannot be assessed purely nu-
merically. For example, identifying artefacts such as evidence
of an obstructed mouthpiece, evidence of a leak or hesitation
at the start of a breath often depends on a visual inspection
by a trained professional. As home spirometry becomes more
prevalent, automating this evaluation with ML can enhance
consistency and allow for large-scale analysis of spirometry
curves without requiring the time and expertise of respiratory
specialists. By incorporating ML, it can address some of the
limitations of manual review: subjectivity and human error.

All breaths were initially of different lengths as patients
blow for varying amounts of time. To make them compatible
for batch processing, all breaths were then zero-padded to the
same length. This ensures the preservation of sequence order,
as padding with zeros does not alter the intrinsic temporal
relationships within the data.

B. Classifiers

The aeon toolkit [16] offers a range of TS specific mod-
els for classification tasks. Middlehurst et al. [17] provide
a comprehensive evaluation of these classifiers, comparing
their performance and speed. This evaluation offers a broad
perspective on the strengths and weaknesses of various TS
classifiers. Based on this, the following seven classifiers were
selected:

1) Catch22: CAnonical Time Series CHaracteristics
(Catch22) [18] is a feature extraction method integrated into a
classifier within the aeon toolkit [16]. Catch22 transforms TS
data into a set of 22 descriptive features, derived from the over
7000 initially available within the Highly Comparative Time
Series Analysis (HCTSA) toolbox [19]. This reduction of
features allows for a more concise evaluation of the input data,
reducing its complexity but preserving the key characteristics.
The extracted features are then typically paired with a default
decision tree-based model, such as Random Forest, to produce

predictions. This model achieves faster training times and
reduced computational cost compared to models that use raw
TS data. The tuning in stage two adjusts Catch22 parameters
related to feature selection, outliers and NaN handling and
computational efficiency.

2) FreshPRINCE: Fresh Pipeline with RotatIoN forest Clas-
sifier (FreshPRINCE) [20] is a TS classification model that
integrates the TSFresh feature extraction algorithm with a Ro-
tation Forest Classifier. The pipeline begins with TSFresh; used
to extract just under 800 features from the TS input data. The
features chosen capture a comprehensive set of characteristics
designed to perform well on classification tasks. The Rotation
Forest Classifier pairs well with the extracted features as it is an
ensemble method known for its accuracy in high-dimensional
feature spaces. The FreshPRINCE classifier often outperforms
basic TS classification methods, such as k-Nearest Neighbours
(KNN), but its computational requirements are higher due
to the more extensive feature-extraction process. The stage
two tuning for FreshPRINCE optimises parameters for feature
extraction and the size and robustness of the Rotation Forest
classifier.

3) KNN DTW: K-Nearest Neighbour TS Classifier, using
Dynamic Time Warping distance metric (KNN DTW), is
another commonly used classification model. The model uses
the k-Nearest Neighbours (KNN) algorithm which classifies
a sample based on the majority label of the k-closest neigh-
bours. As an alternative to a standard distance metric, such
as Euclidean distance, in this case, Dynamic Time Warping
(DTW) is used. DTW is a well-suited distance metric for TS
data as it measures the similarity of sequences by aligning
them with potential shifts in time or warping. This means it
can handle the variations in timing and non-linear distortions
between sequences. Although it can perform competitively
against other TS classifiers, the computational cost is high for
large datasets due to the large number of pairwise distance
calculations needed. The stage two tuning for the KNN DTW
model optimises parameters to balance bias and variance whilst
adjusting the influence of neighbours for better performance.

4) ROCKET: RandOm Convolutional KErnel Transform
(ROCKET) [21] is a classifier that aims to significantly increase
training speed without sacrificing the quality of the results. Us-
ing random Convolutional Kernels enables a single streamlined
approach to extract multiple features from the raw TS data,
which may have previously required multiple, specialised tech-
niques. Once extracted, the features are aggregated to create a
fixed-length feature representation, regardless of the original
TS input length, and then passed through a linear model. The
benefit of using a linear model allows for scalability for large
datasets and in turn improves the speed of classification. The
stage two tuning for ROCKET changes the number of kernels
to balance feature representation, computational cost and the
risk of overfitting and underfitting.

5) Time Series Forest: Time Series Forest (TSF) classifier
is an ensemble-based model built specifically for TS data [22].
It is derived from the original concept of decision trees but



extended for TS data by focusing on random intervals. For
each interval, three key features are extracted: mean, standard
deviation and slope. These features summarise the TS interval
and compile it into an understandable feature, as opposed to the
raw TS data. Due to the simplistic nature of the feature extrac-
tion, the TSF classifier is computationally efficient compared
to models with more complex feature extraction methods. The
stage two tuning for TSK adjusts parameters controlling the
number of decision trees, interval extraction settings and time
constraints, whilst enhancing computational efficiency.

6) SVC: TS specific Support Vector Classifier (TSSVC) is
a Support Vector Machine (SVM) based classifier that is built
specifically for TS data [23]. SVM classifies data based on
finding the optimal hyperplane separating classes in a high-
dimensional space. It is adapted for TS data by applying the
SVM to pairwise similarity measures rather than the raw TS
data. It uses the Global Alignment Kernel (GAK), which is de-
rived from DTW, and quantifies the similarity between two TS
sequences. It computes a kernel matrix, which can be mapped
to a high-dimensional feature space, outlined by the GAK.
The model can learn the hyperplane, between classes from this
transformed feature space. Whilst it can offer robustness and
strong classification performance, SVC can be computationally
expensive and parameter sensitive - significantly affecting re-
sults. The stage two tuning for TSSVC optimises parameters
to balance pattern discovery, overfitting and underfitting, whilst
adjusting training time to reduce computational cost.

7) Shapelet Transform: Shapelet Transform Classifier (STC)
makes use of shapelets; discriminative sub-sets of TS se-
quences, to transform the input data into a new feature space
[24]. Shapelets are specifically chosen based on their ability
to differentiate between two classes, leveraging their powerful
ability to detect patterns most relevant for classification. The
algorithm employs a single-scan method to identify the best
k shapelets. These shapelets are then used to transform the
dataset, in which each of the k features is a representation of the
distance between a TS sequence and a corresponding shapelet.
Shapelet transform can provide insights into the patterns that
separate classes, providing a degree of interpretability, however
discovering these shapelets is computationally expensive. The
stage two tuning for STC adjusts parameters that control the
quantity and quality of extracted shapelets, impacting pattern
recognition and classification, whilst also optimising computa-
tional efficiency and processing speed.

C. Evaluation Metrics

To assess the quality of the models, several evaluation
metrics were used. The purpose of using multiple metrics is
to provide justification for the reliability and true effectiveness
of the model. Thus, the metrics are as follows;

1) Accuracy: A standard evaluation metric, but does not
account for class imbalances.

2) Precision: A metric used to evaluate the proportion of
all positive classifications that are actual positives. A high
precision score, approaching or equalling 1.0, indicates that

almost all samples predicted as a particular class truly belong
to that class.

3) Recall: Also known as the True Positive Rate (TPR), it
evaluates the proportion of actual positives that were correctly
classified as positive. A recall score close to or equal to 1.0
signifies the model’s ability to correctly classify almost all
samples from a particular class.

4) F1 Score: This metric provides a balance between pre-
cision and recall, it works as a better evaluation metric for
class-imbalanced data than accuracy.

5) Area Under the Receiver Operating Characteristic Curve
(AUROC): Provides a representative probability of how well
the classifier can distinguish between the positive and negative
classes. The closer the score is to 0.5, the closer the results are
to random chance.

D. Hyperparameter Tuning

In the second stage of the study hyperparameter tuning was
implemented using the Optuna library [25]. This framework
is flexible and efficient, using Bayesian optimisation to allow
for focus on promising regions rather than exhaustive grid
or random searches. This is done by using a probabilistic
model, such as Tree-structured Parzen Estimator (TPE), which
guides the search as a surrogate model. The purpose of using a
surrogate model is to approximate the results of the objective
function. This is the primary evaluation metric, for this we
chose F1 Score.

The surrogate model aids in approximating the performance
of the current set of hyperparameters, allowing the optimiser
to make informed decisions. This involves deciding between
two main strategies: exploration (searching new areas within
the hyperparameter space) or exploitation (refining the search
within areas that have already demonstrated promising results).
TPE uses Kernel Density Estimation (KDE) to approximate
the distribution of good and bad hyperparameter configurations
[26]. The distributions are applied to two categories of objective
function values: low values (indicating good results) and high
values (indicating poor results).

For KDE, the low-value sets are denoted as
Xlow = {x1, x2, ..., xnlow

} and high-value sets as
Xhigh = {x1, x2, ..., xnhigh

}. The general formula for
KDE is:

p̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(1)

Where p̂(x) is the estimated probability density at point x,
n is the number of data points (either nlow or nhigh) and h is
used to determine how much weight is given to each data point.
K is a kernel function used to represent how much influence
a data point xi has on the density estimate at location x. This
is typically the Gaussian kernel, which can be expressed as:

K(u) =
1√
2π

exp

(
−1

2
u2

)
(2)



Where u is the scaled distance between the location x and
each data point xi. The likelihood ratio of the two densities is
used to calculate the TPE:

ratio(x) =
p̂low(x)

p̂high(x)
(3)

If p̂low(x) is high, it indicates that the objective function
returns better results for those hyperparameters. Conversely, if
p̂high(x) is high, the objective function returns worse results for
those parameters.

In Optuna, model tuning is referred to as a ‘Study’ that
finds optimal hyperparameters through iterative trials. Each
trial evaluates a different set of parameters, and unpromising
trials are pruned early to reduce training time. For our tuning,
we selected to use 10 trials, a number chosen based on the
dataset size and the relatively small hyperparameter space. As
most parameters were categorical, fewer trials were sufficient to
achieve meaningful exploration. Furthermore, for computation-
ally expensive models like KNN DTW and TSSVC, 10 trials
struck a balance between exploration and training efficiency.
Optuna’s dynamic search space feature further enhanced effi-
ciency by adapting parameter suggestions based on prior trial
results, ensuring that even a limited number of trials provide
valuable results.

IV. STUDY RESULTS

As explained previously, the first stage compared the baseline
performance of all models using the evaluation metrics above,
without any parameter tuning. FreshPRINCE performed best
(0.925 accuracy, 0.956 precision, 0.953 recall, 0.954 F1, 0.862
AUROC), closely followed by Catch22 (0.924 accuracy, 0.954
precision, 0.954 recall, 0.954 F1, 0.861 AUROC). These results
indicate that both models consistently outperformed the others
in accuracy, precision, and F1 score.

After each classifier underwent hyperparameter tuning, the
results were compared and Figure 2 summarises the results of
the best trial for each model. All classifiers demonstrated im-
proved performance after hyperparameter tuning, as expected.
FreshPRINCE remained the best-performing model, marginally
outperforming Catch22 in all metrics.

The final stage involved retraining using the best parameters
obtained in the previous stage, on a person-independent 5-fold
cross-validated model, to eliminate potential patient-level bias.
Table I presents the evaluation metrics resulting from testing on
unseen data. The top three models remain consistent, as shown
in Figure 3, which visually compares their performance across
all metrics. FreshPRINCE outperformed Catch22 in most met-
rics, but Catch22 achieved a higher recall, demonstrating its
strength in correctly identifying positive samples. ROCKET
consistently underperformed compared to both FreshPRINCE
and Catch22 across all metrics except recall. However, its
lower performance in the other metrics suggest that its recall
advantage could be due to a higher false positive rate rather
than true effectiveness.

Inference times (including signal pre-processing and feature
processing stages) were calculated using a test set of 20

Fig. 2. Results from each classifier at the second stage of the study.

subjects. The Shapelet model was the fastest at 2.92 sec-
onds, followed by Catch22 (6.61 seconds) and TSForest (17.3
seconds). While run-time testing was not the primary focus,
the results suggest potential for future mobile deployment.
Reimplementation into more efficient languages for final app
production could reduce latency, but is beyond the scope of
this study. Given the resource constraints of mobile devices,
balancing computational efficiency and accuracy is crucial.

At all three stages, TSSVC consistently achieved the highest
recall, classifying nearly all ‘Not Acceptable’ spirometry tests
correctly. However, this resulted in a high false positive rate,
as reflected in its low precision score. The AUROC score
(0.566) further highlights TSSVC’s weak ability to distin-
guish between ‘Acceptable’ and ‘Not Acceptable’ tests, leading
to near-random classification. Although FreshPRINCE has a
slightly lower recall (0.959) compared to TSSVC, it is a
more balanced model overall. With higher precision (0.975)
and a stronger AUROC (0.918), FreshPRINCE offers better
distinction between ‘Acceptable’ and ‘Not Acceptable’ tests,
making it more reliable with fewer false positives.

TABLE I
RESULTS FROM EACH CLASSIFIER AT THE FINAL STAGE OF THE STUDY

(BOLD INDICATES BEST SCORE FOR EACH METRIC)

Accuracy Precision Recall F1 AUROC
Catch22 0.943 0.971 0.961 0.966 0.909
FreshPRINCE 0.945 0.975 0.959 0.967 0.918
ROCKET 0.903 0.916 0.972 0.943 0.769
Shapelet 0.862 0.876 0.972 0.921 0.649
TSSVC 0.837 0.839 0.995 0.910 0.566
TSForest 0.893 0.900 0.980 0.939 0.725
KNN DTW 0.752 0.889 0.818 0.852 0.555

V. STUDY RESULTS VERSUS BENCHMARK REFERENCE

Table II evaluates published results on spirometry-related
classification. While direct comparison is limited through dif-
ferences in methods and datasets (not publicly available), our
accuracy aligns with the results in Table II. Many of these stud-
ies rely primarily on accuracy as the main evaluation metric,
without addressing the potential impact of class imbalance on
their results. As highlighted by Rezvani et al. [29], this can be



TABLE II
A TABLE COVERING PUBLISHED PAPERS, THEIR MODELS USED AND BEST RESULTS.

Martins et al.
2024 [3]

Das et al.
2024 [4]

Wang et al.
2022 [27]

Bhattacharjee
et al. 2022 [7]

Taloba et al.
2025 [8]

Viswanath et al.
2018 [28]

Mac et al.
2024 [10]

Our Study
Results

Size/Type
of Dataset

5287
flow-volume
curves.

36873
flow-volume
curves.

16502
flow-volume
curves.

1314 spirometry
reports.

920 annotated
audio recordings.

36161 annotated
audio recordings.

2871 Pulmonary
Function Tests
(PFTs) (TS data).

15150 individual
spirometry
recordings
(TS data).

Model/s Used 6 CNN models. Custom CNN-NN. DL, ResNet50. Supervised learning
models.

Supervised
learning models.

A variety of ML
and DL models.

Novel algorithm
built using
cascaded
MiniRocket
classifiers.

TS classifiers.

Data
Preprocessing

Data augmentation
– resizing images
and colour channel
separation.

Processing of raw
data into pixel
matrices and
calculating
ATS/ERS criteria.

Extraction of
numerical
information,
creation of
curves.

Not described.

Z-score
normalisation,
generating MFCC
and Forward
Feature Selection.

Cleaning data,
multiple feature
extraction and
generating
Mel-spectrogram
features.

Not described. Zero-padding to
fixed length.

Best Results

VGG16 – 0.939
accuracy, with
highs of 0.977
Precision, 0.968
Recall and
0.952 F1 Score.

0.87 accuracy for
acceptability,
0.92 accuracy for
usability. 0.92
sensitivity and
0.96 specificity
for usability.

0.951 accuracy
for FEV1
acceptability and
0.943 accuracy
for FVC usability.

MLP – accuracy of
0.837 and
Matthew’s
correlation
coefficient of 0.682.

SVM-KNN –
accuracy of 0.94.

Gradient Boost –
0.982 precision,
0.866 recall.
GCRNN – 0.983
precision and
0.880 recall.

Mean accuracies
for each of the
classes range
from 0.91-0.94.

FreshPRINCE -
accuracy 0.945,
precision 0.975,
recall 0.959,
F1 0.967 and
AUROC 0.918.

Fig. 3. A visual comparison of the best three classifiers, Catch22, Fresh-
PRINCE and ROCKET using results from the final stage.

problematic because a high accuracy can still be achieved even
if all minority class samples are misclassified. To address this
issue, it is essential to incorporate additional metrics designed
to account for class imbalance, such as precision, recall and F1
Score, which we have used throughout this study.

In our study, the best-performing model achieved a precision
score of 0.9745, comparable to other results in Table IV. In
another example, Martins et al. [3] report a recall score of
0.968, while our best model achieved a recall score of 0.959,
demonstrating comparable performance.

For a direct comparison, we replicated the methodology from
Das et al. [4] as it closely mirrors how respiratory experts assess
spirometry curves, looking at both the plots and spirometric
metrics. Other methods were excluded due to missing pre-
processing details [7], [10], reliance on audio data [8], [28],
or smaller datasets [3], [27].

Figure 4 compares the Das et al [4] study results (green
and orange) with our replication (yellow and brown). The
original consistently outperformed our replication across all
four metrics: accuracy, sensitivity, specificity and AUROC.

Fig. 4. Das et al. [4] model Vs Our Replication.

While the first three remained relatively close, AUROC showed
a notable drop in our replication, indicating weaker model
generalisation. This likely stems from differences in dataset
size and diversity - Das et al. [4] used 36,873 flow-volume
curves, from participants aged 6-79, while our dataset contained
only 15,150 breaths from participants over 40. Moreover, class
imbalance in our dataset led to frequent misclassification,
further impacting performance.

VI. DISCUSSION AND CONCLUSION

The significance of FreshPRINCE and Catch22 providing the
best results, indicate that the spirometry data has meaningful
patterns that are captured well by statistical and domain-
specific features. However, ROCKET and Shapelet Transform
traditionally work well on TS classification, but they are prone
to overfitting on smaller datasets, which could be the case for
this study [21], [30].

Future work will focus on implementing the next step in the
ATS/ERS spirometry guidelines by labelling ‘Not Acceptable’



breaths as ‘Usable’ and ‘Not Usable’ and providing real-
time feedback with teaching tips for improving unacceptable
breaths. This labelling will simplify grading and help identify
the reasons for unacceptable or unusable breaths, enabling real-
time detection of use-errors.

Additionally, expanding the dataset beyond TIPAL, which
only includes IPF patients, to include healthy subjects and those
with other pulmonary conditions will allow a more comprehen-
sive evaluation of the method. Another area to explore in the
future is improving inference times and optimising models to
support deployment onto mobile devices. Applying lightweight
time-series models to portable spirometers and smartphone
apps can enable efficient, real-time, at-home spirometry with
minimal resource demands, making the technology more ac-
cessible and scalable for a wider population.
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