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Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to 
their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. 
Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in 
AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing ef
forts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms 
(SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped 
samples into four and five clusters based on the reference genome. By using different association models, we identified marker–trait 
associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively 
nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We 
identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our find
ings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and can
didate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.
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Introduction
Tropical species of the Musa genus produce starchy fruit, con
sumed worldwide, and is of great importance for food security. 
In 2022, the total production of bananas globally reached 140 mil
lion tons (FAO 2022). In addition, bananas are Colombia’s third 
most important agricultural export, behind coffee and ornamen
tal flowers, accounting for ∼2.1 million tons in 2022 (FAO 2022). 
The two principal Musa fruits are bananas and plantains. Most ed
ible Musa cultivars are hybrid, polyploid, and vegetatively propa
gated because they usually have parthenocarpic fruits. This 
feature causes low fertility and hinders the genetic improvement 
of the crop (Sardos et al. 2016).

Musa, domesticated in Southeast Asia, was introduced into 
Africa, the Americas, and other parts of the world (de Jesus et al. 
2013). Many Musa varieties produce fruits with high caloric con
tent. Plant parts are used as food, fodder, fiber, and traditional 
medicines (Panda et al. 2020). Cultivated bananas arose from a 
complex domestication scheme involving several taxa, including 
different subspecies of Musa acuminata Colla (A genome) and 

Musa balbisiana Colla (B genome) (Christelová et al. 2017). Modern 
cultivars contain combinations with various levels of ploidy pro
duced through unbalanced meiosis, such as diploid (AA; BB; or 

AB; 2n = 2× = 22), triploid (AAA; AAB; or ABB; 2n = 3× = 33), and 
tetraploid (AAAA; AAAB; AABB; or ABBB; 2n = 4× = 44) (de Jesus 
et al. 2013).

Developing high-yielding varieties is essential to meet the food 
demand of a growing population. Precise improvement of com
plex quantitative traits needs the identification of associated gen
omic regions, like quantitative trait loci (QTLs), to enrich the gene 
diversity (Swarup et al. 2021). Genome-wide association study 

(GWAS) effectively identifies genes and QTLs based on the linkage 
disequilibrium (LD). This method has been widely used in several 
crops using genome-wide dense markers to predict candidate 
genes (Tibbs Cortes et al. 2021). The principal advantages of this 
method are as follows: (1) it uses diverse germplasm, making 
the procedure more efficient and less expensive than bi-parental 

QTL mapping, and (2) the high resolution and power of association 
studies (Tibbs Cortes et al. 2021).
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GWAS can use single-nucleotide polymorphisms (SNPs) markers 
produced by high-throughput sequencing from reduced genome re
presentation libraries [for example, genotyping by sequencing (GBS) 
and restriction site-associated DNA sequencing]. However, the de
crease in sequencing costs has allowed the implementation of tech
niques such as skim sequencing (skim-seq), in which the whole 
genome of the studied species is sequenced at low coverage 
(Kumar et al. 2021). This technique is an effective tool for genotyping 
and identifying many SNPs associated with traits of interest for ap
plied breeding programs (Adhikari et al. 2022).

In GWAS, differentiating genuine associations from false- 
positive marker–trait associations (MTAs) caused by population 
structure and kinship is challenging (Kaler and Purcell 2019). 
Single-locus GWAS (SL-GWAS) methods such as mixed linear 
model (MLM), which accounts for the random effect associated 
with kinship and covariates such as population structure but 
not for the association between markers, have been widely used 
to control spurious MTAs (Zhang et al. 2005). However, SL-GWAS 
models testing one locus at a time fail to model complex traits 
controlled simultaneously by numerous loci. Multiple critical- 
value test corrections are usually required to reduce false-positive 
rates for SL-GWAS (Zhang et al. 2019b). Multilocus GWAS 
(ML-GWAS) models can be used to improve the accuracy of results 
and overcome the SL-GWAS limitations, avoiding the confound
ing effects of population structure by accounting for kinship and 
principal components. Models like fixed and random model for 
circulating probability unification (FarmCPU) (Liu et al. 2016) pro
vided higher statistical power and eliminated false-positive 
MTAs without compromising genuine associations. This model 
can include multiple markers simultaneously as covariates, par
tially removing the confounding effect of markers (which refers 
to a variable whose omission from a GWAS regression model 
will cause a spurious association between the genotype and 
the phenotype) and kinship. It employs the fixed-effect model 
(FEM) and random-effect model iteratively to remove confound
ing altogether. Besides, Bayesian-information and linkage- 
disequilibrium iteratively nested keyway (BLINK) (Huang et al. 
2019) have been developed, which has a higher statistical power 
and is more time-efficient, reducing computing time by replacing 
random effect with a FEM.

During recent years, some GWASs have been conducted in 
Musa samples. Sardos et al. (2016), using a panel of 105 accessions 
and 5,544 SNP markers, reported 13 candidate genomic regions re
lated to seedless phenotype using the MLM. Also, Nyine et al. 
(2019) conducted the first GWAS for bunch-weight components. 
In this study, the authors used 307 genotypes combined with 
27,178 SNPs. Finally, they reported 25 genomic loci principally lo
calized on chromosome 3 using the MLM.

In this work, we undertook a GWAS on morphology, fruit 
quality, and yield traits in 124 accessions from the Colombian 
Musaceae Collection (CMC) to (1) study the phenotypic variance 
and (2) detect genetic loci underlying the studied agronomic traits. 
The results should help to understand the genetic basis of morph
ology, fruit quality, and yield traits in promissory Musa cultivars to 
facilitate further genetic improvement through marker-assisted 
selection.

Materials and methods
Plant material
The plant material used is established in situ in the CMC. It 
contains Musa landraces and cultivars, administered by the 
Corporación Colombiana de Investigación Agropecuaria— 

AGROSAVIA at the Palmira Research Center, Valle del Cauca, 
Colombia (76°18′51.8″ W, 3°30′42.4″N). This center is located at 
1,000 m.a.s.l. and presents an annual average temperature of 
23°C, precipitation of 1,100 mm, and relative humidity of 75%. 
The 190 accessions of the collection (Higgins et al. 2023) were estab
lished in an area of 1.5 ha, in clay loam soils and flat topography, in 
five consecutive blocks separated by three meters. Each block 
comprised a productive site (mother plant, daughter, and grand
daughter) of each accession (190 sites per block), meaning that 
there were five repetitions or productive sites per accession, one 
in each block. The organization within the block was in consecu
tive order of the field code for each accession, in the same way in 
all blocks. The agronomic management was based on cultural 
practices such as defoliation, elimination of new individuals, elim
ination of dry socks from the plant stem, and elimination of the 
pseudostem once the plant was harvested. The fertilization was 
based mainly on K and N supplementing, with supplemental irri
gation carried out at field capacity, and weed was mechanically 
managed with a manual scythe. Phytosanitary management fo
cuses on controlling the weevil complex with pseudostem traps 
and using entomopathogenic fungi.

Of this collection, we selected the 124-panel used in this study 
based on the availability of phenotypic data with a maximum of 
20% missing data and the representation of different genetic 
groups. The association panel represents different genome ploi
dies (31 diploids, 79 triploids, and 14 tetraploids samples), which 
are grouped into 21 genetic subgroups and 13 genomic clonal 
varietal groups previously reported by Higgins et al. (2023)
(Supplementary Table 1).

DNA isolation, library preparation, and 
sequencing
Previously, the DNA of the 124 samples was extracted using the 
DNeasy Plant Mini Kit (QIAGEN, Germany), following the manu
facturer’s instructions. The concentration of the DNA was mea
sured using a NanoDrop 1000 UV spectrophotometer (Thermo 
Scientific, Wilmington, USA), and the quality was verified by elec
trophoresis in 1% agarose.

Library preparation and genotypification were performed at 
Earlham Institute (Norwich, UK) using the skim-seq method. 
Libraries were sequenced on the Illumina NovaSeq sequencer 
using a standard Illumina library with 150-bp pair-end reads, as de
tailed in Higgins et al. (2023).

Phenotypic characterization
The evaluated variables were grouped into morphology, fruit 
quality, and yield categories (Table 1, Supplementary Table 2). 
According to the commercial harvest criteria, all variables were 
recorded when the bunches reached physiological harvest matur
ity (Maguiña and Benigna 2019). Maturity is achieved when the 
fruits of the first hand of the bunch have a yellow hue, the fingers 
have lost their angularity or edges due to their filling, and the tips 
of the fingers have turned black. The variables were recorded in 
the second crop cycle, and the repetitions were from the different 
blocks planted in the field.

Morphological variables such as pseudostem height (HT), sin
gle leaf blade width (LBW), and time from flowering to harvest 
(FTH) were recorded directly in the field. HT was measured in me
ters (m) from the stem base to the point of peduncle emergence, 
according to the descriptors of the International Plant Genetic 
Resources Institute (IPGRI-INIBAP/CIRAD 1996) and the MusaNet 
(Taxonomy Advisory Group 2010). Similarly, the LBW was 
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recorded in centimeters (cm) with a tape measure at the max
imum point. We calculated FTH in days as the time elapsed from 
flowering (when the last bracts fall from the most distal hand to 
display the female flowers) to the harvest of the bunch. The flower
ing date was marked at the emergence of the acorn using plastic 
tape hung from the peduncle, and each week was indicated by dif
ferent tape colors. The harvest was carried out once the commer
cial harvest criteria were met (Maguiña and Benigna 2019).

The fruit quality variables, such as the content of total soluble 
solids (TSS), the acidity or alkalinity of a sample (pH), and the ti
tratable acidity (TA), were recorded in the green stage to the 
bunch harvest by triplicate in the AGROSAVIA laboratory at the 
Research Center Palmira. For the preparation of the sample, 30 g 
of pulp from the central finger of the second hand of the bunch 
was liquefied for 2 min in 90 ml of distilled water and filtered using 
a membrane grade 40 with a pore size of 8 μm. To quantify TSS, we 
placed a sample drop in a digital refractometer (PAL-1 BRIX 
0.0-53%). The TSS content, calculated in Brix degrees (°Brix), is 
composed of sugars (the most abundant), salts, acids, vitamin C, 
amino acids, and some pectins and interpreted as the percentage 
of sugar in the sample (Yanes 2018). The pH was determined using 
a Metrohm potentiometer (model 744 pH meter), and the TA was 
quantified by titration with an acid–base reaction, and the results 
were expressed in grams (g)—organics acid/100 g of pulp (Table 1).

The cluster was separated into stalk, rachis, acorn, hands, and 
fingers to determine the yield variables (Table 1). The quantifica
tion of the data was carried out in triplicate for each accession. 
The hand’s weight (HW) was recorded in grams (g) on a digital 
scale (Mettler, g ± 0.01). The number of hands on a bunch (BH) 
was counted, and using the second hand emitted from each 
bunch, the number of fruits was determined. The fruit or finger 
length (FL) was measured in cm, selecting three fingers of the se
cond hand of the bunch. The outer arc was measured with a tape 
measure (precision ± 1 mm) to the apex of the fruit without con
sidering the pedicel. To determine the percentage of pulp dry mat
ter weight (PDW) and the pulp percentage (PP), we used the second 
hand of the bunch. The PDW was calculated as the difference be
tween the fresh and the dry pulp weight, dehydrated at 105°C for 
48 h. The PP was calculated as the difference between the un
peeled and peeled fruit weights. We cut the fruit in half to deter
mine peel thickness (PT) and separated the peel from the pulp. 
We measured in millimeters (mm) the PT in triplicate with a cali
per or Pie King 6′ (0–150 mm) Mitutoyo 530-104 analog.

Statistical analysis of phenotypic information
We calculated descriptive statistics of the phenotypic data of 
12 traits for the 124 Musa accessions. An analysis of variance 
(ANOVA), with a significance level of P < 0.05, was performed to 
establish statistically significant differences between accessions 
according to their genome (AA, AAA, AAAA, AAAB, AAB, AABB, 
AB, and ABB). Tukey’s multiple comparison test was used to estab
lish statistically significant differences between pairs of means. 
Broad-sense heritability (h2

bs) of all traits was calculated using 
the formula described by Allard (1960) as follows: h2

bs = [(σ2
G)/ 

(σ2
P)] × 100, where σ2

G is the genotypic variance and σ2
P is the pheno

typic variance. The correlation between the evaluated traits was 
calculated using Pearson’s correlation coefficient (r; P ≤ 0.05) and 
principal component analysis (PCA) to assess the variable contri
bution in accounting for the variability in each principal compo
nent, and the relationship and the grouping between accessions 
were performed. Finally, a multiple linear regression analysis 
(r2) was performed to establish the predictor variables for three 
of the most important variables (one for each category): HT for 
morphology, TSS for fruit quality, and HW for yield. We used 
JASP v0.16.4 software (JASP Team 2023) for statistical analysis. 
The Factoextra package of R (Kassambara and Mundt 2020) was 
used to plot the PCA, the optical clusters, and the hierarchical 
dendrogram using the clustering method Silhouette.

SNP calling
SNP discovery was previously performed by Higgins et al. (2023)
with the GATK HaplotypeCaller v3.7.0 (McKenna et al. 2010) soft
ware using the alignments against M. acuminata doubled-haploid 
cv. Pahang accession version 4 (A genome) (Liu et al. 2023) and 
an M. balbisiana cv. Pisang Klutuk Wulung accession version 1.1 
(B genome) (Wang et al. 2019).

Population structure and LD analysis
We carried out the following analyses using the two genome refer
ences. The population structure was inferred using the maximum 
likelihood method on the Admixture v1.3 software (Alexander and 
Lange 2011) using values of K that varied from 1 to 10. The best K 
was selected using the lowest cross-validation error values. The 
accessions with a proportion of ancestry ≥ 0.5 were assigned to a 
unique cluster, while samples < 0.5 were assigned to a mixed clus
ter. The relative kinship coefficients of individual genotypes based 
on identity were estimated using the Loiselle method (Loiselle 
et al. 1995).

LD was calculated among all the possible pairs of SNPs and es
timated using r2 (squared allele frequency correlation). The LD 
block size of the whole genome was calculated by fixing the r2 

threshold at half LD decay using PopLDdecay software (Zhang 
et al. 2019a). Values r2 were plotted as a function of genetic dis
tance in kilobases (kb) using loess regression to visualize the LD 
decline in R.

Genome-wide association study
With the adjusted means of the 12 phenotypic traits for each ac
cession, we used different statistical GWAS models to identify 
candidate genes that may be associated with agronomic charac
teristics. The SNPs were subjected to a quality filter in VCFTools 
software (Danecek et al. 2011): data above 20% missing data and 
minor allele frequency (MAF) < 0.05% were discarded. We used 
GAPIT v3.0 package for R (Wang and Zhang 2021) to test the 
MLM approach for the SL-GWAS. We used FarmCPU and BLINK 
for the ML-GWAS. The admixture matrix was used to correct the 

Table 1. Phenotypic traits of the Musa accessions used for 
analysis.

Category Trait Acronym Units

Morphology Pseudostem height HT Meters (m)
Single leaf width LBW Centimeters (cm)
Time from 

flowering to 
harvest

FTH Days

Fruit 
quality

pH pH -
Total soluble solids TSS °Brix
Titratable acidity TA of g—organics acid/ 

100 g of pulp
Yield Hands weight HW Grams (g)

Number of hands 
in a bunch

BH Number

Fruit length FL Centimeters (cm)
Pulp percentage PP Percentage (%)
Pulp dry weight 

percentage
PDW

Peel thickness PT Millimeters (mm)
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population structure. The kinship matrix also accounted for the 
relationships among individuals.

The MLM equation was y = si + Q + K + e, where y corresponds to 
the phenotypic observations. The fixed effects that help to reduce 
false positives are the Q, considered as population structure, and 
the K, that is, the relationship between individuals, which is in
cluded as the kinship matrix. Finally, the e is the random vector 
of residual effects. The FarmCPU is an ML-GWAS analysis 
that performed fixed and random effects using the formula 
y = si + S + e. This model removes the confounding data using mul
tiple markers as covariates. The obtained K value was used to se
lect the associated markers with the maximum likelihood 
method. Finally, the BLINK model eliminates the computational 
complexity (Wang and Zhang 2021) using the Bayesian informa
tion content in a FEM.

The P-value obtained for each SNP was transformed into 
a base-10 logarithmic scale and later presented in circular 
Manhattan and quantile–quantile (QQ) plots. The significant asso
ciations between SNPs were corrected using the false discovery 
rate (FDR) correction. Only MTAs that exceeded the threshold va
lue were reported in this study. We considered an MTA an SNP as
sociated with a gene protein or transcription factor. The marker 
effect and phenotype variance (PV) explained (%) were also esti
mated for each MTA.

SNP annotation
The candidate genes were searched within a 50-kb flanking region 
(approximately 50-kb upstream and 50-kb downstream) of the de
tected significant SNP using the M. acuminata DH Pahang (v4) and 
M. balbisiana DH-PKW (v1.1) from the JBrowse of the banana genome 
hub (https://banana-genome-hub.southgreen.fr/musa_acuminata_ 
pahang_v4 and https://banana-genome-hub.southgreen.fr/musa_ 
balbisiana_v1.1). We recognized the biological functions of 
genes/transcripts close to the significant SNPs by blasting 
the flanking sequences of candidate SNPs against the database 
of the National Center for Biotechnology Information (NCBI) 
(http://www.ncbi.nlm.nih.gov/). We also looked for potential 
loss-of-function alleles among the list of candidate genes by 
examining the predicted impact of the complete set of nucleotide 
variants located within genic regions using the software SnpEff 
v5.0 (Cingolani et al. 2012). The SNP-predicted effects were 

categorized by their impact as high (disruptive impact on the 
protein), moderate (nonsynonymous substitution), low (syn
onymous substitution), and modifier (with effects on noncoding 
regions).

Results
Phenotypic characterization of Musa accessions
The statistical descriptors for the morphological variables, such 
as HT and LBW, were similar, with values ranging from 2.27 m 
in accessions AAA to 2.98 m in the accession AABB and from 
64.50 cm in accessions ABB to 82.90 cm for accessions AAAA 
(Supplementary Table 3). In addition, the traits related to fruit 
quality were similar between genomic groups. The pH ranged 
from 5.30 (AAAA) to 5.65 (AAB), and values of TSS were between 
3.30 (AAAA) and 4.29 (AA) °Brix, except for AAAB, which had 
5.13 (± 1.61) °Brix. TA values fell between 0.06 (ABB) and 0.09 
(AAAB) g—organics acid/100 g of pulp.

The FTH trait ranged from 92.06 days on average for AA to 148.50 
days for AABB. We also observed that fruit length (FL) and PT were 
higher in triploid and tetraploid accessions than in diploid acces
sions. The diploid AA had a mean value of 9.53 (± 1.12) cm in FL 
and 2.95 (± 0.63) mm in ST, and AB had 10.25 cm in FL and 
2.60 mm in ST. Triploids AAA, AAB, and ABB had mean values for 
FL of 14.87 (± 2.67),17.07 (± 3.44), and 13.55 (± 1.79) cm, respectively, 
and for ST, AAA had means values of 3.88 (± 0.87), AAB 3.97 (± 1.17), 
and ABB 3.98 (± 0.60) mm (Supplementary Table 3).

As a result of the ANOVA, the Tukey test showed that some 
phenotypic traits presented significant differences according to 
the genome or ploidy level (Table 2). The attributes of the diploid 
genome AA were the most significantly different from those of the 
other genomic groups. Characteristics such as FTH, HW, and FL 
were lower in AA samples (92.06 ± 11.26 days, 7121.16 ±  
2956.16 g, and 9.53 ± 1.12 cm, respectively), while PP was higher 
(66.78% ± 6.12, Supplementary Table 3). AAA triploid accessions 
and tetraploid (AAAA and AAAB) genomes were statistically dif
ferent in traits such as FTH and PDW compared to AAB triploid ac
cessions. However, quality traits (pH, TSS, and TA) did not present 
significant differences according to the genome of the accessions. 
Meanwhile, the traits’ h2

bs ranged from 25.1% for TA to 99.9% for 
PDW (Supplementary Table 3).

Table 2. Post hoc Tukey’s test based on ANOVA for phenotypic traits according to the genome of the Musa accessions.

Genome

Morphology trait Quality trait Yield trait

HT LBW FTH pH TSS TA HW BH FL PP PDW ST

AA AAA 0.631 0.088 <0.001c 1.000 0.892 1.000 <0.001c 0.203 <0.001c <0.001c <0.001c 0.002b

AAAA 0.999 0.024a 0.002b 1.000 0.885 1.000 <0.001c 0.017a <0.001c 0.009b <0.001c 0.703
AAAB 0.995 0.714 <0.001c 0.952 0.678 0.999 0.015a 0.548 <0.001c <0.001c 0.077 0.170
AAB 0.436 0.027a 0.315 0.154 0.832 1.000 0.023a 0.402 <0.001c <0.001c 0.104 <0.001c

ABB 0.756 1.000 <0.001c 0.957 0.992 0.975 0.041a 0.793 0.002b <0.001c 0.998 0.033a

AAA AAAA 0.840 0.547 0.922 1.000 0.988 1.000 0.490 0.341 0.821 0.983 0.503 0.978
AAAB 0.996 0.999 0.061 0.960 0.282 1.000 0.912 1.000 0.986 0.367 0.109 1.000
AAB 0.009b 1.000 0.003b 0.225 1.000 1.000 0.002b 0.991 0.020a 1.000 <0.001c 0.998
ABB 0.159 0.330 0.605 0.964 1.000 0.964 0.629 1.000 0.807 0.968 <0.001c 1.000

AAAA AAAB 0.986 0.537 0.859 0.981 0.470 0.998 0.237 0.599 0.652 0.967 0.015a 0.998
AAB 0.990 0.583 0.036a 0.842 0.989 0.999 0.003b 0.175 0.998 0.972 <0.001c 0.928
ABB 0.989 0.054 1.000 0.980 0.989 1.000 0.103 0.371 0.378 1.000 <0.001c 0.960

AAAB AAB 0.526 0.996 <0.001c 0.986 0.236 1.000 0.703 0.994 0.068 0.282 <0.001c 0.995
ABB 0.667 0.781 0.891 1.000 0.617 0.956 0.999 0.999 0.997 0.917 0.394 0.998

AAB ABB 1.000 0.224 <0.001c 0.993 1.000 0.955 0.918 1.000 0.008b 0.943 0.261 1.000

According to Tukey’s multiple range test, significance levels are: aP < 0.05; bP < 0.01; cP < 0.001. 
HT, pseudostem height; LBW, leaf blade width; FTH, flowering to harvest; TSS, total soluble solids; TA, titratable acidity; HW, hands weight; BH, number of bunch 
hands; FL, fruit length; PP, pulp percentage; PDW, pulp dry weight; PT, peel thickness.
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Pearson’s correlation coefficient analysis allowed us to associ
ate among traits (Fig. 1). The HT had a significant positive 
correlation with FL (r = 0.199, P < 0.05) and a highly significant 
positive correlation with LBW and ST (P ≤ 0.01). LBW was signifi
cantly correlated with HW, BH, FL, and ST. The trait FTH was posi
tively correlated with BH and HW (P ≤ 0.05). In contrast, the 
variables related to fruit quality were not significantly correlated 
with the other traits, except for TSS and TA, which were highly sig
nificantly positively correlated (r = 0.551, P < 0.001). Finally, FTH 
and PDW and FTH and PP were negatively correlated, which 
may indicate that, at shorter harvest times, it increases the 
amount of weight and pulp (Fig. 1).

Also, we used a regression model to predict the effect of one or 
several trait(s) on three of the most critical variables for bananas 
(HT, TSS, and HW). For HT, model 3 explained 31.4% of the vari
ability, resulting in LBW and PDW as predictor variables. For 
TSS, the variable TA is the only predictor that explained 36.3% 
of its variance in model 2. This result is expected since both traits 
are measures of fruit quality. Finally, model 5 was the best 

explaining 73.5% variance in HW and the predictor variables 
were mostly fruit traits (BH, FL, and PDW) and LBW (Table 3).

PCA and hierarchical clustering based on 
phenotyping
The first and second principal components (PC1 and PC2) ac
counted for only 47.6% of total phenotypic variance observed 
in the GWAS panel (Fig. 2). However, the first four PCs accounted 
for 69.9% of the total phenotypic variance observed which was 
above average (Table 4). The main phenotypic factors that 
contributed to the clustering on PC1 were HW, BH, and LBW in 
the positive direction and PDW in the negative direction. 
Similarly, the factors that contributed most to PC2 were TA 
and TSS in the positive direction and pH in the negative direc
tion. Other factors contributed to PC3 and PC4 in the positive 
or negative direction (Table 4). Clustering of accessions was 
mostly influenced by genomic composition although admixture 
between accessions belonging to different genomic groups was 
observed.

Fig. 1. Pearson’s correlation coefficient of phenotypic traits evaluated in the Musa accessions. HT, pseudostem height; LBW, leaf blade width; FTH, 
flowering to harvest; TSS, total soluble solids; TA, titratable acidity; HW, hands weight; BH, number of bunch hands; FL, fruit length; PP, pulp percentage; 
PDW, pulp dry weight; PT, peel thickness. *P < 0.05; **P < 0.01; ***P < 0.001.
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For the hierarchical clustering, plantains and bananas 
formed distinct groups based on their genomic groups and sub
groups. The best value for K was 4 to group the 124 Musa acces
sions based on the 12 evaluated traits (Supplementary Fig. 1). 

Cluster analysis (Fig. 3) showed a first group (I—red color) 

with 14 accessions, mainly AA diploids (7) and AAB triploid (6), 

and PA_03_22, an AAAB plantain. The second group (II—green 

color) contained 50 accessions, mainly grouped by AAA triploid 

and the AAAA and AAAB tetraploids, and the only AABB tetra

ploid accession of the collection (GAEP_2). The third group 

(III—blue color) comprised 32 accessions, mainly with a 

diploid genome AA (23), in addition to the only AB accession 

(NEY_POOVAN). The fourth group (IV—pink color) was repre
sented primarily by AAB triploid accessions (26) and two samples 
with the ABB genome.

Population structure and LD
The sequence data for each sample had an average depth of ∼7×. We 
used the original VCF file reported by Higgins et al. (2023) to extract 
the SNPs for the 124 samples used in this study. In total, 187,133 
SNPs against M. acuminata (A genome) and 220,451 SNPs against 
M. balbisiana (B genome) were identified in the association panel.

The population structure analysis revealed that 96% of the ac
cessions could be stratified into five populations for the A genome, 

Table 3. Predictive models to determine the possible association between the phenotypic characteristics of Musa accessions.

Trait Model R R2 RMSE t P

HT 1 0.000 0.000 0.460 Intercept 45.973 <0.001
2 0.425 0.180 0.420 Intercept 3.395 0.001

LBW 3.925 <0.001
3 0.561 0.314 0.387 Intercept 0.789 0.433

LBW 3.707 <0.001
PDW 3.670 <0.001

TSS 1 0.000 0.000 1.302 Intercept 26.885 <0.001
2 0.602 0.363 1.047 Intercept 13.091 <0.001

TA 6.312 <0.001
HW 1 0.000 0.000 7509.973 Intercept 14.896 <0.001

2 0.717 0.515 5269.706 Intercept −4.691 <0.001
BH 8.614 <0.001

3 0.798 0.637 4591.799 Intercept −6.544 <0.001
BH 7.707 <0.001
FL 4.816 <0.001

4 0.839 0.703 4180.598 Intercept −1.346 0.183
BH 7.059 <0.001
FL 5.716 <0.001
PDW −3.904 <0.001

5 0.857 0.735 3979.299 Intercept −2.058 0.043
BH 5.264 <0.001
FL 3.714 <0.001
PDW −4.764 <0.001
LBW 2.838 0.006

HT, pseudostem height; LBW, leaf blade width; TSS, total soluble solids; TA, titratable acidity; HW, hands weight; BH, number of bunch hands; FL, fruit length; PDW, 
pulp dry weight.

Fig. 2. Distribution of Musa accessions in the GWAS panel on the first two principal components calculated from phenotypic data.
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while the remaining 4% could be regarded as admixtures (Fig. 4a, 
Supplementary Fig. 2a). For the B genome, 88% of the accessions 
could be stratified into four populations, while 12% could be 

considered admixtures (Fig. 4b, Supplementary Fig. 2b). The div
ision into different groups follows the genome composition and 
ploidy level of accessions. The red group comprised ANVA, 
Bocadillo, Icononzo, Nallo, Natu, Sabo, and Sapi, among other ac
cessions. The orange group comprised Banano, GrosMichael, and 
Guayabo accessions, the light-green group principally consisted of 
Dominico accessions, and the blue group consisted of Cachaco 
accessions.

In addition, we evaluated the admixture plots for K4, K5, 
and K6. The M. acuminata subspecies were distributed into various 
clusters. The first cluster regrouped all the Sucrier subgroup ac
cessions (red group in Fig. 4a and b). Diploid accessions AA were 
highly homogenous, and their ancestry remained restricted to 
the red group. The diploid accession AB presented a mixed ances
try. From the groups formed by admixture, the accessions from 
the main banana cultivated subgroups (AA, AAA, AAB, and ABB) 
presented higher ancestry and were very consistent between gen
omes and Ks.

When K4 was considered, the orange group formed by AAA and 
AAAA (Cavendish, GrosMichel) and AAB plantain subgroups, 
(Fig. 4a and b) presented several samples with unique ancestry for 
both genomes. However, once K5 and K6 were evaluated, several 
accessions from AAA presented introgression of new groups 

Table 4. PCA based on phenotypic traits evaluated in the Musa 
accessions.

Component PC1 PC2 PC3 PC4

Eigenvalue 3.0111 2.289 1.743 1.309
Variance (%) 26.6 21.0 11.8 10.5
Cumulative variance (%) 26.6 47.60 59.4 69.90
Phenotypic trait
Hands weight (HW) 0.903
Number of bunch hands (BH) 0.891
Leaf blade width (LBW) 0.528
Pulp dried weight (PDW) −0.468 0.673
Titratable acidity (TA) 0.918
pH −0.865
Total soluble solids (TSS) 0.751
Pulp percentage (PP) −0.899
Peel thickness (PT) 0.692
Fruit length (FL) 0.689
Flowering to harvest (FTH) −0.775
Pseudostem height (HT) 0.622

Fig. 3. Hierarchical clustering analysis of agricultural traits (morphology, fruit quality, and yield) in 124 Musa accessions.
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(yellow and dark green), such as the accessions Guayabo_A, 
Guayabo_rojo_esplendor, Guineo negro, Hibrido _de_saba_2, 
Mbindi, Red_1, and Red_2_enano. A similar situation was presented 
for some accessions of the AAB genome (light-green group), in 
which the accessions Figue_Famile, Maia_maoli, Manzano, Maritu, 
Niyarma_YIK, Pompo_o_comino_Tuu_GIA, and Yangambi_KM_3 
presented mixed ancestry. Finally, the blue group comprised homo
geneous accessions from the Bluggoe and Pelipita subgroups.

Moreover, based on standardized covariance of genetic dis
tances of SNP markers, PCA obtained four clusters for each gen
ome (Fig. 5a and b). The relatedness of pairwise coefficients 
estimated in the kinship matrix indicated lower genetic 

relatedness among individuals in the association panel for each 
genome (Fig. 5c and d).

In the PCAs (Fig. 5a and b), cluster I was composed of most of 
the accessions of the AAB genome, such as Dominico_caobo and 
Dominico_enano, and two accessions of the AAAB genome 
(FHIA_21 and FHIA_110). In cluster II, accessions with AAB and 
AAAB genomes were regrouped, but Guineo_negro and 
Nkitenggwa with an “AAA” genome were also included in the 
PCA of the A genome but not in the PCA of the B genome. 
Cluster III placed closely most of the accessions that were not pre
sented in the B genome, such as “Cavendish AAA,” “Red AAA,” 
“Gros Michel AAA,” “Sucrier AA,” and “AAAA.” Cluster IV was 

Fig. 4. Admixture plot showing the proportion of ancestry shared between Musa accessions in the GWAS panel. a) Population structure from SNPs based 
on M. acuminata reference genome, b) population structure from SNPs based on M. balbisiana reference genome.
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conformed uniquely by accessions of the ABB genome. The acces
sions Ney_poovan and Gaep_2 did not group to any cluster.

The r2 value for the A and B genomes gradually decreased when 
the genetic distance increased (Supplementary Fig. 3). The mean 
r2 across the A genome was 0.10 and for the B genome was 0.16. 
LD decay was 200 kb for the A genome and 100 kb for the B gen
ome, indicating that any SNPs within this distance behave as an 
inheritance block. This result supported the precise colocalization 
of MTAs and causative genes within genome blocks using GWAS.

Marker–trait associations
For all the studied traits, 137 MTAs were identified with a signifi
cance −log10(P-value) over 10. MTAs were filtered by FDR correc
tion value (−log10(P) > 5.32) to increase the stringency of selection. 
Supplementary Tables 3–and 5 show the MTAs above FDR correc
tion, their position in the genome, and the model used for identi
fication. Significant SNPs identified for the studied traits were 

visualized in Manhattan plots (Fig. 6, Supplementary Fig. 4) and 
QQ plots (Supplementary Fig. 5).

MTAs for morphology-related traits
In this category, the marker effect ranged from −36.38 to 39.63, 
with a PV explained from 0.10 to 50% and a mean value of 
15.95%. Fifteen SNPs were found for the A genome associated 
with morphological traits. Two, five, and eight SNPs were de
tected for HT, FTH, and LBW, respectively (Fig. 6a, 
Supplementary Table 4). Using BLINK, the number of significant 
SNPs identified was one for FTH and two for HT, while FarmCPU 
identified five SNPs for FTH (one in common with BLINK) 
and eight for LBW. Finally, the MLM found one SNP for the 
LBW trait, the same identified using FarmCPU for this genome 
(Supplementary Fig. 4a). For the B genome, 19 significant SNPs 
were found for the FTH, HT, and LBW traits (Fig. 6b, 
Supplementary Table 4). BLINK model found four SNPs for 
FTH, one for HT, and one for LBW. FarmCPU found three SNPs 

Fig. 5. Population structure analysis of the 124 Musa accessions. a) PCA based on 187,133 SNPs identified using M. acuminata reference genome, b) PCA 
based on 220,451 SNPs identified using M. balbisiana reference genome, c) kinship plot showing the relationship among the genotypes based on 187,133 
SNPs, d) kinship plot showing the relationship among the genotypes based on 220,451 SNPs. In the kinship plots, the red and yellow colors represent pairs 
of individuals with highest and lowest identity, respectively.
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Fig. 6. Circular Manhattan plot displaying the chromosome-wide significant market MTAs using BLINK and FarmCPU models. The vertical scale bar 
represents the significance level of MTAs (−logP values). Individual chromosomes are represented on the outer circle and separated by white borders. 
Dashed circles indicate FDR thresholds (0.05). Genomic regions of detected QTL on the respective chromosomes are colored in red (outer circle). For plant 
morphology traits, a) MTA based on 187,133 SNPs identified using M. acuminata reference genome, b) MTA based on 220,451 SNPs identified using M. 
balbisiana reference genome. For fruit quality traits, c) MTA based on 187,133 SNPs, d) MTA based on 220,451 SNPs. For yield-related traits (e, f) MTA based 
on 187,133 SNPs, g, h) MTA based on 220,451 SNPs.

10 | J. A. Osorio-Guarin et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/14/8/jkae108/7679680 by guest on 20 August 2025



for FTH (two in common with BLINK), nine for HT, and three for 
LBW (one in common with BLINK). Finally, MLM identified three 
SNPs for FTH (one not found by ML-GWAS methods) 
(Supplementary Fig. 4b). In this category, the S09_47449299 
and S09_6752619 SNPs were found for different traits or 
models in the A genome. Finally, for the B genome, the SNPs 
S09_21767064, S09_7165470, and S11_12647562 were identified 
as associated with several traits or models.

MTAs for fruit quality-related traits
In this category, the marker effect ranged from −4.51 to 4.16, with 
a PV explained from 7.54e−9 to 62.16% and a mean value of 10.17%. 
The SL-GWAS using the MLM found no SNPs associated with fruit 
quality traits for either Musa genomes (Supplementary Fig. 4c 
and d). For the A genome, 33 MTAs were found. The BLINK model 
found 7, 13, and 17 significant SNPs for TSS, PH, and TA, respect
ively (Fig. 6c, Supplementary Table 5). In addition, the SNPs 
S04_33402915, S04_40529326, S04_44039837, and S08_9712811 
were found for several traits or models. For the B genome, 13 
MTAs were identified (Fig. 6d, Supplementary Table 5). The 
BLINK model identified one, three, and six SNPs for PH, TA, 
and TSS, respectively. With FarmCPU, four SNPs for PH and one 
for TA were found. Finally, for the B genome, the SNPs 
S06_31105046 and S10_2117746 were identified for both models 
associated with TA and PH, respectively.

MTAs for yield-related traits
In this category, the marker effect ranged from −8.7 to 7.82, 
with a PV explained from 0.1 to 73.7% and a mean value of 
16.7%. Using the MLM, the SL-GWAS found no SNPs associated 
with yield-related traits for either of the two Musa genomes 
(Supplementary Fig. 4e–h, Supplementary Table 6). For the A gen
ome, a total of 23 MTAs were found. The FarmCPU model identi
fied two SNPs for BH, three for FL, four for PDW, and four for PP. 
The BLINK model identified four for BH, two SNPs for FL, one for 
HW, one for PDW, two for PP, and two for ST (Fig. 6e and f, 
Supplementary Table 6). Meanwhile, for the B genome, we found 
34 MTAs. The FarmCPU model found five SNPs associated with BH 
(Fig. 6g and h, Supplementary Table 6). Besides, this model found 
three SNPs associated with HW, five related to FL, and six for PDW. 
Finally, based on the BLINK model, we found six SNPs for FL, six 
for PDW, one for PP, and one for ST.

Putative candidate genes associated with MTAs
Considering M. acuminata DH Pahang (v4) as the reference gen
ome, we identified 38 candidate genes within 50-kb regions up
stream or downstream of the significant SNPs associated with 
any trait. In addition, we identified 40 candidate genes for M. bal
bisiana DH-PKW (V1.1). Most identified SNPs were near transcripts 
coding for proteins or transcription factors. Supplementary 
Tables 3–4,and 5 list the candidate genes with functional annota
tion on the NCBI website for each trait category (morphology, fruit 
quality, and yield). Based on the functional annotations, the most 
promising candidate genes were related to photosynthesis and 
metabolism processes, plant hormones, cellular transport, tran
scriptional regulation, structural proteins, and cell division func
tions. These genes could directly or indirectly regulate the growth 
and development of banana plants.

To better characterize the potential consequences of the SNPs, 
we annotated the variants with SnpEff and predicted the effects of 
variation on the identified genes (Table 5). A large majority of the 
variants did not change the amino acid in the protein. For the A 
genome, three SNPs associated with morphological traits and 

one with yield traits presented a high effect level, principally re
lated to the loss or gain of a stop codon that could lead to a short 
polypeptide or elongated transcript. In addition, another effect 
could be associated with the affectation of alternative splicing 
by some SNPs. The B genome presented four SNPs associated 
with morphology, seven SNPs with quality, and six SNPs with yield 
related to the frameshift variant (sequence variant that disrupts 
the translational reading frame), splice donor variant (a splice 
variant that changes the second base pair region at the 5′ end of 
an intron), intron variant (a transcript variant occurring within 
an intron), splice acceptor variant (a splice variant that changes 
the second base region at the 3′ end of an intron), and splice region 
variant (a sequence variant in which a change has occurred within 
the region of the splice site, either within 1–3 bases of the exon or 
3–8 bases of the intron).

Discussion
Banana producers look for specific morphology, fruit quality, and 
yield features, which influence the adoption of new banana var
ieties. Identifying the genomic regions controlling these agronom
ic traits is a fast and intelligent way to generate knowledge for 
developing new varieties with desirable features. Genome-wide 
SNP markers with a deep phenotypic characterization can assist 
breeders in dispensing higher genetic gains (Mammadov et al. 
2012; Morgil et al. 2020). In the present study, we conducted a 
GWAS based on genetic and phenotypic information in banana 
accessions conserved in the AGROSAVIA germplasm. We aim to 
improve our knowledge of genetic architecture and the inherit
ance of crucial agronomic banana traits.

We measured 12 traits describing morphology, fruit quality, 
and yield in 124 banana accessions. Most traits followed a normal 
distribution, supporting their relative stability. Standard devia
tions (SDs) revealed significant variation, indicating the data val
idity for statistical analyses. The SD was low for HT, pH, TSS, 
TA, BH, and ST. Instead, LBW, HW, FTH, PDW, PP, and FL had 
high SD, indicating increased variability of these characteristics 
among the accessions. This variability is due to the presence of 
genomic groups with different subgenome compositions, which 
in turn are composed of different clonal varietal subgroups, 
such as Gros Michel, Cavendish, Red, Lujugira/Mutika, Sucrier, 
Plantain, Bluggoe, Popoulu, and Pelipita. Likewise, it is important 
to highlight the significant differences between HW, FL, and 
PDW in the different subgenome compositions. These descriptors 
have been highlighted for their discriminating power between cul
tivars according to their genomic composition and A and B gen
ome contributions. Unlike AA and AAA bananas, the cultivars 
with the highest FL and PDW are related to the genomic compos
ition with the highest M. balbisiana contribution, such as AAB and 
ABB (Dufour et al. 2009).

It is essential to highlight the significant positive correlations 
between HT and LBW, FL, and ST, as well as between LBW and 
HW, BH, FL, and ST. These correlations indicate that taller plants 
have larger leaves that provide the transformation capacity of 
photoassimilates, forming larger fruit clusters with a high amount 
of pulp, which is an essential feature for crop yield. The PCA 
showed that yield traits explained most of the variability in our 
collection, probably due to the banana domestication process, 
and yield was of great importance for the farmers. Larger fruits 
are positively correlated with the presence of thicker peels (PT). 
Accessions with this characteristic may be interesting for the cel
lulose fiber industry, which uses banana peels as a biomaterial for 
paper production (Khawas et al. 2016). Likewise, FTH is positively 
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Table 5. Effects of significant SNPs predicted by snpEff.

Species Trait GWAS 
Chromosome

SNP 
GWAS 

position

SNP 
SnpEff 

position

Distance Effect category Effect 
level

Alternative 
allele count

Alternative allele 
frequency

M. acuminata Morphology chr01 12719063 12719292 229 Stop gained HIGH 101 0.177
39555304 39555365 61 Stop lost, splice 

region 
variant, and 
conservative 
inframe 
deletion

HIGH 8 0.014

39555366 62 Stop lost and 
splice region 
variant

HIGH 31 0.055

39555367 63 Stop lost and 
splice region 
variant

HIGH 99 0.177

chr09 47449299 47449121 178 Stop gained HIGH 114 0.200
Yield chr07 38033462 38033252 210 Stop gained HIGH 220 0.388

38032971 491 Stop gained HIGH 110 0.194
38032877 585 Stop gained HIGH 157 0.278
38032870 592 Stop gained HIGH 29–151 0.051–0.268

M. balbisiana Morphology Bchr03 29586628 29586067 561 Stop lost HIGH 469 0.823
29586700 72 Stop lost HIGH 47 0.083
29587052 424 Stop lost HIGH 456 0.809
29587055 427 Stop gained HIGH 455 0.807
29587097 469 Stop lost HIGH 54 0.096
29587103 475 Stop gained HIGH 20 0.036
29587256 628 Stop lost HIGH 449 0.792

Bchr05 34530451 34530629 178 Frameshift 
variant

HIGH 19 0.033

34530630 179 Frameshift 
variant

HIGH 22–11 0.039–0.019

34530666 215 Stop lost HIGH 26 0.046
34530673 222 Frameshift 

variant
HIGH 25 0.044

34530674 223 Frameshift 
variant

HIGH 16 0.028

34530678 227 Stop gained HIGH 9–56 0.016–0.098
34530688 237 Frameshift 

variant
HIGH 9 0.016

34530693 242 Splice donor 
variant and 
intron variant

HIGH 18 0.032

34530694 243 Splice donor 
variant and 
intron variant

HIGH 18 0.032

34530822 371 Splice donor 
variant and 
intron variant

HIGH 62 0.109

34530832 381 Frameshift 
variant and 
stop gained

HIGH 277 0.489

34530863 412 Frameshift 
variant

HIGH 248 0.440

34530864 413 Frameshift 
variant

HIGH 246–248 0.434–0.437

34530866 415 Frameshift 
variant

HIGH 487 0.863

Bchr06 33091399 33091574 175 Stop lost and 
disruptive 
inframe 
deletion

HIGH 133–321 0.237–0.572

33091582 183 Stop lost HIGH 359 0.643
Bchr10 32201530 32200795 735 Splice acceptor 

variant and 
intron variant

HIGH 32 0.056

32200884 646 Stop gained HIGH 11–2 0.019–3.527e-03
Quality Bchr04 38049326 38049086 240 Frameshift 

variant
HIGH 372 0.656

38049402 76 Stop lost HIGH 276 0.487
38049530 204 Frameshift 

variant
HIGH 104 0.183

(continued) 
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correlated with BH and HW, which may indicate that, at longer 
harvest times, there will be a higher number of hands and weight.

Regarding hierarchical clustering, the groups were differen
tiated by their genetic variability. AA diploid and AAB triploid ba
nanas formed the first cluster with a distinguished phenotype 
(Fig. 3). These bananas tend to be consumed fresh or directly 
(Dufour et al. 2009) due to their pulp characteristics and high sugar 
content when ripe, consistent with the higher values of pH, TSS, 
and low organic acid (AT) contents observed. These traits are es
sential indicators of fruit quality, according to Enriquez Valencia 
(2021), who evaluated the physicochemical properties of flours 
and starches of AA diploid and AAA triploid materials, highlight
ing their importance for fresh consumption. Diploid bananas 
from cluster one differed from those in the third cluster in 

variables associated with bunch size, such as FL, PP, and ST. The 
Sucrier cultivars (AA) are characterized by small fruits with a 
high PP and thinner peels. Enriquez Valencia (2021) found signifi
cant differences between the physical characteristics (bunch and 
fruit size and the number of hands and fingers per hand) of diploid 
bananas from clusters one and three.

The second cluster regrouped accessions with low dry matter 
content (PDW) and fresh consumption use (Gibert et al. 2009), es
pecially the Gros Michel and Cavendish subgroups. The acces
sions regrouped in the fourth cluster presented characteristics 
related to the contribution from the B genome. These accessions 
are adapted for the frying industry due to the high PDW content 
that improves oil absorption (Dufour et al. 2009; Gibert et al. 
2009). Likewise, these accessions can be used by the paper 

Table 5. (continued)  

Species Trait GWAS 
Chromosome

SNP 
GWAS 

position

SNP 
SnpEff 

position

Distance Effect category Effect 
level

Alternative 
allele count

Alternative allele 
frequency

38049531 205 Frameshift 
variant and 
splice region 
variant

HIGH 253–90 0.446–0.159

Bchr08 10478815 10478050 765 Stop gained HIGH 48–12 0.085–0.021
10478074 741 Frameshift 

variant
HIGH 15 0.026

10678591 10677986 605 Stop gained and 
splice region 
variant

HIGH 47 0.193

Yield Bchr01 17193812 17193320 492 Stop lost HIGH 479 0.840
17193325 487 Stop gained HIGH 117 0.205
17193330 482 Stop lost HIGH 25 0.044
17193490 322 Frameshift 

variant
HIGH 265 0.465

17194030 218 Stop lost HIGH 62 0.109
Bchr06 1508813 1508438 375 Stop gained HIGH 303–191 0.561–0.354

1508513 300 Stop gained HIGH 245 0.432
1508572 241 Frameshift 

variant
HIGH 33 0.058

1508576 237 Stop lost HIGH 16–35 0.028–0.062
1508759 54 Stop lost HIGH 305 0.538
1508764 49 Stop lost HIGH 108 0.190
1509011 198 Frameshift 

variant
HIGH 17 0.030

1509016 203 Frameshift 
variant

HIGH 149,6 0.266–0.011

1509028 215 Stop gained HIGH 35 0.062
1509037 224 Stop lost HIGH 375–143 0.668–0.255

12662938 12663145 207 Stop gained HIGH 174 0.305
Bchr07 34950115 34949803 312 Splice acceptor 

variant and 
intron variant

HIGH 285 0.503

34949981 134 Frameshift 
variant

HIGH 6 0.011

Bchr08 38003235 38002633 602 Stop gained HIGH 46 0.081
38002869 366 Stop lost HIGH 6 0.011

40937646 40937984 338 Stop lost HIGH 192 0.340
40937989 343 Frameshift 

variant
HIGH 179–78 0.316–0.138

40938023 377 Splice acceptor 
variant and 
intron variant

HIGH 473 0.834

40938126 480 Stop gained HIGH 472 0.837
40937984 338 Stop lost HIGH 192 0.340
40937989 343 Frameshift 

variant
HIGH 179–78 0.316–0.138

40938023 377 Splice acceptor 
variant and 
intron variant

HIGH 473 0.834

40938126 480 Stop gained HIGH 472 0.837
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industry using rind cellulose, as they contain a thicker rind and 
(ST) and larger fruits (FL) (Silva et al. 2001).

Admixture analysis and the PCA presented similarities in the 
obtained groups. Both analyses differentiated the ABB accessions 
and a large part of the AAB individuals. However, the PCA failed to 
separate the AA, AAA, and AAAB genomes in different clusters 
compared to the admixture analysis. Phenotypic and genetic 
data produced dissimilar groups. Genetic analyses clustered ac
cessions with similar genome types, while the phenotype analyses 
formed clusters with mixtures of different genomes.

To study the genetic inheritance of the described traits by 
GWAS, we conducted an extensive genomic characterization of 
the same germplasm using the skim-seq method (Kumar et al. 
2021; Adhikari et al. 2022). Rare alleles sometimes control the vari
ation of phenotypic traits, but identifying rare variants through 
GWAS is challenging and requires high diversity and robust 
phenotypic evaluation (Tibbs Cortes et al. 2021). The methodology 
used in this study provides comprehensive sequencing that de
tects even rare alleles with high confidence levels. GWAS analysis 
may produce false associations because it can be affected by the 
population structure and the inclusion of diverse genotypes. Our 
study presented an advantage in comparison with other GWAS 
studies in Musa because in our panel we included diploids, tri
ploids, and tetraploids genotypes belonging to 13 varietal genetic 
clusters, wild and single representatives of other common culti
vars (Higgins et al. 2023). The marker density produced was higher 
than in other studies (Sardos et al. 2016; Nyine et al. 2019), which 
allowed us to comprehensively analyze the population structure 
and carry out a GWAS with good resolution.

The number of markers in a determined genetic distance re
quired for association mapping is determined by the extent of 
LD decay (Flint-Garcia et al. 2003). As expected in an outcrossing 
species, the analyses demonstrated a rapid decline in LD. The pre
vailing characteristics of outcrossing species, including high re
combination and mutation rates and gene conversion (Sorkheh 
et al. 2008), explain this LD behavior. Compared to findings from 
other studies, our LD analysis results revealed a relatively lower 
mean r2 value (0.10–0.16) than the reported value of 0.25 (Sardos 
et al. 2016) but equivalent to the mean r2 = 0.15 reported by 
Nyine et al. (2019). This outcome is explained by the high genetic 
diversity in our dataset. Flint-Garcia (2013) stated that the admix
ture between individuals of genetically distinct populations leads 
to the rapidly decreasing LD of different ancestries. High genetic 
diversity and rapid LD decay are possibly a reflection of the intra- 
and inter-specific hybrid origin of studied accessions, resulting 
from outcrossing between seed-bearing subspecies of M. acumina
ta and M. balbisiana comparable to other nondomesticated crop 
species such as Chenopodium quinoa Willd (Patiranage et al. 2022). 
Although Musa’s selection began around 7,000 years ago 
(Denham et al. 2003), this crop has been cultivated via vegetative 
propagation. Endeavors to generate novel varieties through hy
bridization, mutation, or transformation have encountered chal
lenges caused by species’ genetics and sterility (Heslop-Harrison 
and Schwarzacher 2007).

Mir et al. (2021) defined yield as a very complex quantitative 
trait controlled by a network of many small-effect minor genes 
or QTLs. It is a challenge to apply GWAS to study complex traits 
resulting from the cumulative effect of QTLs, epistasis (interac
tions between QTLs), and the interaction between environment 
factors and QTL (Andrade et al. 2020; Merrick et al. 2022). For 
such polygenic traits, it is necessary to sample a large population 
with phenotypic diversity to improve the detection of meaningful 
associations. Using GWAS, Nyine et al. (2019), using a dataset of 

307 genotypes and 27,178 SNPs, identified QTL in the Musa AAA 
group for productivity-related traits, such as fruit number. They 
identified 25 genomic loci, primarily localized on chromosome 3, 
and concluded that a few QTLs with major effects controlled yield 
in the studied population. Sardos et al. (2016) detected 13 candi
date genomic regions potentially linked with the seedless pheno
type (i.e. parthenocarpy combined with female sterility) using a 
panel of 105 accessions of M. acuminata and 5,544 SNPs from 
GBS data. Hence, our GWAS is robust because it included 124 ac
cessions of two Musa species (M. acuminata and M. balbisiana) and 
over 150 K SNPs to perform comparative models, such as 
SL-GWAS and ML-GWAS.

The QQ plot of P-values comparing observed and expected (ran
dom) exhibited a diagonal linear shape, confirming the models’ 
power in discerning genuine MTAs. In this study, ML-GWAS mod
els outperformed SL-GWAS, which has been reported in several 
plant studies (Kaler et al. 2020; Zhong et al. 2021; Adhikari et al. 
2023). Based on our results, summarizing all the traits, the 
BLINK performed better than FarmCPU because it found more 
MTAs, possibly due to its higher computational power.

We identified 22 genes related to morphological traits in 34 loci 
(15 for the A genome and 19 for the B genome). In contrast, MLM 
found only a single gene undetected by the ML-GWAS models. 
In addition, for this category FarmCPU found more MTAs than 
BLINK. Several genes identified by ML-GWAS merit attention for 
their role in regulating plant growth and development, such as 
the GSTs (Jiang et al. 2010) on chromosome 1 (S01_12719063), 
bric-à-brac, Tramtrack, broad (BTB) gene (Chevrier et al. 2014) 
located on chromosomes 2 and 9 (S02_10779672 and S09_ 
24200380, respectively), and polygalacturonases located on 
chromosome 3 (S03_36192969) (Yang et al. 2018). The gene rever
sionless1 (REV1) (S10_26700057) could be essential for tolerance 
to stress because it plays a role in DNA damage tolerance and 
repair (Schröpfer et al. 2014). The branched-chain amino acids 
found on chromosome 10 (S10_6660970) are related to catabolism 
genes in stress, development, and the diurnal/circadian cycle 
(Peng et al. 2015).

The three models identified the association of FTH with the SNP 
S09_21767064 in chromosome 9 close to the gene NADH ubiquinone 
(UQ) oxidoreductase (complex I), which provides the input to the re
spiratory chain from the NAD-linked dehydrogenases of the citric 
acid cycle (Kerscher 2000). The SNP S09_7165470 on chromosome 
9 was associated with LBW, which is close to the jacalin-related 
lectin gene that has a signaling response to multiple stresses (Song 
et al. 2014) and in plant secondary metabolism (Hosmani et al. 
2013). Finally, we found two SNPs (S10_8799377 and S10_8799377) 
in chromosome 10 associated with FTH and HT, respectively, related 
to cytochrome c oxidase, an electron acceptor of the respiratory 
chain, involved in the reduction of O2 to H2O (Mansilla et al. 2018). 
Two SNPs in chromosome 11 were located in the polyprenyl diphos
phate synthase gene, which plays essential roles in the biosynthesis 
of functionally important plastoquinone and UQ, involved in elec
tron transfer and energy transformation in the plastids and mito
chondria (Liu et al. 2019). The SNP S10_1387129 in chromosome 10 
was also found close to transcription factor MYB60 involved with 
stomatal opening and reported as a transcriptional integrator of oxy
lipins responses in guard cells and abscisic acid in Arabidopsis thali
ana. This transcription factor induces the closure of stomatal pores 
to reduce water loss by transpiration (Rusconi et al. 2013). Other 
genes associated with morphological traits belong to a few function
al groups, such as membrane vesicle trafficking, transcriptional 
regulation, redox, and cellular transports, which are critical for plant 
growth and development.
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In the fruit quality category, PH, TA, and TSS of Musa were as
sociated with multiple genes according to our GWAS results. 
Improving crop yield presents a challenge as it can potentially 
compromise quality, a well-known phenomenon with implica
tions for crop breeding. This challenge arises from the inherent 
negative correlation between yield and quality traits (Wallace 
et al. 2018). Our study diverged from this, as we identified no sub
stantial correlation between fruit quality and the other 
yield-related features. However, the accessions we studied exhib
ited a notable range of variability and modest yields, differing 
from the high-yielding genotypes explored in previous research 
(Wallace et al. 2018). Fruit maturity and quality are tied to TSS con
centration and TA content (Subedi and Walsh 2011; Youryon and 
Supapvanich 2017). For instance, the softening of banana fruit can 
be attributed to the degradation of cell wall compounds, a de
crease in starch content, and augmentation in sugar levels (Li 
Wen et al. 2006), while the variation in TA content, on the other 
hand, is influenced by the genomic composition (Youryon and 
Supapvanich 2017).

Of particular interest, genes associated with TA or TSS traits 
have emerged from our analysis. Notably, the SNP S04_41216210 
identified on chromosome 4 is linked to WRKYs, which hold sig
nificance due to their involvement in biotic/abiotic stress re
sponses and developmental and physiological processes 
(Phukan et al. 2016). On chromosome 6, we found three SNPs 
(S06_12286050, S06_12286054, and S06_12286057) related to the 
gene mevalonate diphosphate decarboxylase. This enzyme cata
lyzes the decarboxylation of six-carbon MVA-PP to five-carbon iso
pentenyl diphosphate, a fundamental structure required for 
isoprenoid biosynthesis that is a vital cellular intermediate 
(Krepkiy and Miziorko 2004). Another notable finding is the SNP 
S10_20397479 located in the transcription factor MYB59, which 
is crucial in regulating cell cycle progression and root elongation 
in A. thaliana (Fasani et al. 2019). While our study sheds light on 
genes implicated in Musa fruit quality, further research is impera
tive to unravel the precise functions of these genes.

For the yield traits, 57 MTAs were found. Most SNPs were lo
cated in genes encoding conserved and hypothetical proteins, 
but some mapped to known transcription factors and genes in
volved in diverse cellular processes. Nyine et al. (2019) reported 
25 significant QTLs, primarily localized on chromosome 3. In 
contrast, our investigation discovered novel robust association 
signals on distinct chromosomal regions. For the A genome, 
we identified six SNPs on chromosome 9 and four SNPs on 
chromosome 1, while for the B genome, we identified four 
SNPs on chromosomes 6, 8, and 10. According to the outcomes 
of our GWAS analysis, it is evident multiple genes would control 
yield-associated traits.

As expected, the identified SNPs that had a high effect on gene 
function were found in a smaller proportion. Further experimen
tal verification is necessary to confirm that predicted impacts are 
as follows: (1) widespread in the population or if it is present in 
only one individual and (2) if they produce or affect the phenotype. 
On the other hand, heritability is a population parameter that 
measures the degree of variation in a phenotypic trait due to gen
etic variation (Schmidt et al. 2019). Therefore, it is reasonable to 
expect a positive relation between heritability and the ability to 
detect associations. In the current population, high h2

bs was found 
for the traits, varying from 0.25 for TA to 0.99 for PDW, suggesting 
that the phenotypic variations of all traits are mainly affected by 
genetic factors. In line with this, most of the individual markers 
explained a small portion of the phenotypic variation (from 10% 
for quality traits to 16.7% for yield traits), with just a few markers 

that explained >30%. Similar high H2 results were reported by 
Nyine et al. (2019), who found that bunch weight was 0.92, the 
number of hands was 0.88, the number of fruits was 0.83, and 
the fruit length was 0.9. Our finding diverges from the report by 
Nyine et al. (2019), who postulated that few QTLs with major ef
fects govern the yield expression. Our study reveals contrasting 
results, suggesting that the phenotypic variation depends on the 
cumulative actions of many genes with minor effects, potentially 
attributed to evaluating different Musa populations, using two dis
tinct reference genomes, and employing three analytical models.

Our investigation offers novel insights into the underlying gen
etics governing morphology, fruit quality, and yield traits, laying a 
solid foundation for comprehensive functional studies. The mar
kers identified through our rigorous analysis are promising for 
pyramiding favorable alleles in new cultivars embodying a desir
able suite of traits. The stable SNPs identified by different models 
and related to various characteristics are of particular signifi
cance, underscoring their robustness and applicability. It has 
been suggested that it is preferable to have populations with 
100–500 individuals to have robust results in GWAS (Kumar et al. 
2012). Our study had a population of 124 samples from which 
high P-values were obtained. In further studies in Musa, a suitable 
improvement could be to increase the population size to have a 
good representation of different ploidy levels and thus to improve 
the detection power of meaningful associations with large effects. 
In the close future, we will confirm the MTAs identified, validating 
the presence/absence of the SNP associated with the trait using 
competitive allele-specific PCR markers. This transformation 
will enable the assessment of their efficacy in pinpointing indivi
duals possessing the desired traits within bi-parental populations. 
Our study holds the potential to help Musa improvement strat
egies through informed and targeted breeding approaches.

Conclusions
In the current investigation, we harnessed the power of GWAS 
methodologies, conducting a comprehensive analysis involving 
124 Musa accessions. This rigorous approach revealed a compen
dium of SNP markers and prospective candidate genes exhibiting 
significant associations with 12 agronomic traits. This work con
tributes theoretical depth and practical utility to genetic breeding, 
particularly concerning traits relevant to Musa collections. 
Furthermore, it accentuates the efficacy of employing ML-GWAS 
models, a dynamic tool that effectively pinpoints many MTAs 
within complex traits. Our findings supported the precision and 
effectiveness of trait-focused genetic evaluation within Musa spe
cies, providing a solid footing for future advancements in crop im
provement strategies.
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