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 A B S T R A C T

Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random 
domains daily for Command-and-Control (C&C) communication, challenging traditional detection methods. 
This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms 
(NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including 
several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and 
generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing 
on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%. 
Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly 
improves DGA detection compared to existing methods, advancing practical threat detection capabilities.
1. Introduction

In recent years, ransomware has emerged as a significant cyberse-
curity threat, with a notable increase in global cyber attacks (Tyagi, 
2023; Griffiths, 2023; Ford, 2024). Statistics from 2021 reveal a con-
cerning surge, with over 623.3 million attempted ransomware incidents 
recorded, marking a substantial 105% rise compared to the previous 
year 2022 (Griffiths, 2023). Despite a slight decrease of 23% in 2022, 
ransomware attacks remain prevalent, posing persistent challenges to 
individuals and organisations around the world. Between 2023 and 
2024, the global share of users affected by ransomware attacks in-
creased to 0.44%, a 0.02 percentage point rise . The average ransom 
payment in 2024 reached $2.73 million, nearly $1 million higher than 
in 2023 . Ransomware damages are expected to hit $265 billion annu-
ally by 2031 (Kaspersky, 2025; Chen et al., 2024). DGAs are pivotal 
in ransomware operations in Command-and-Control (C&C), enabling 
threat actors to dynamically generate many domain names for both 
malware agents and the C&C Server. By employing DGAs, cybercrimi-
nals can obfuscate their malicious activities, making it challenging for 
traditional detection mechanisms to identify and mitigate ransomware 
threats effectively (Kemmerling, 2023; Tuan et al., 2022).

Several malware’s families utilises DGAs to locate and connect 
to C&C servers. This method allows malware creators to evade the 
domain blacklist of the C&C server. This technique poses challenges 
for security measures to blacklist all potential domains generated by 
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DGAs. Since threat actors only register a minor portion of these do-
mains, DGA-infected malware generates numerous unresolved DNS 
queries. Some can lead to a resolved IP that can connect to the C&C 
server (Anderson et al., 2016; Shahzad et al., 2021). In addition, 
relying solely on the heuristic blocking method is unreliable for security 
solutions, as legitimate computing systems may generate unresolved 
DNS queries for benign purposes. The significance of DGAs extends 
beyond ransomware, which includes various other forms of malware 
proliferation. In addition, Botnets, Trojans, information stealers or 
Remote Access Trojans (RATs), adware, and spyware are among the 
many types of malware that use DGA to establish communication 
channels with (C&C) Server (Suryotrisongko and Musashi, 2022; Sun 
and Liu, 2023). Botnets, for instance, utilise DGAs to facilitate coordi-
nation among compromised devices, enabling attackers to orchestrate 
large-scale distributed denial-of-service (DDoS) attacks or propagate 
additional malware (Sea and Law, 2023; Ding et al., 2023). Trojans and 
RATs employ DGAs to maintain stealthy communication with command 
and control servers, allowing threat actors to remotely control compro-
mised systems and exfiltrate sensitive information (Weissgerber et al., 
2023). Similarly, adware and spyware employ DGAs to evade detection 
and persistently monitor and collect user data for malicious purposes.

Traditional methods such as domain blocklists, DNS sinkholing, IDS 
rules, and IP-based blacklists, fall short in effectively mitigating DGA-
based threats (Zhao et al., 2023a). For instance, domain blocklists 
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can be easily circumvented as DGAs are capable of generating over 
50,000 domains daily, rendering static blacklists obsolete almost im-
mediately (Highnam et al., 2021; Sun and Liu, 2023). DNS sinkholing 
and rule-based IDS systems also struggle with the high rate of false 
positives, often exceeding 20%–30%, due to benign domains occasion-
ally exhibiting similar entropy or structure to malicious ones (Highnam 
et al., 2021; Sun and Liu, 2023).

In addition, DNS sinkholing which redirects traffic from malicious 
domains to controlled servers, allowing organisations to intercept com-
munications intended for DGA-generated domains and disrupt mali-
cious activity (Quezada et al., 2022). While effective in theory, DNS 
Sinkholing requires significant expertise and resources to set up and 
maintain sinkhole servers. The above-cited reactive measures rely on 
identifying and redirecting traffic to known malicious domains, making 
them less effective against unknown DGA-generated domains. Another 
traditional method employ IDS rule-based systems, which rely on pre-
defined rules to detect and block network traffic associated with DGA 
activity (Zhao et al., 2023a). However, defining accurate and exhaus-
tive rules to cover all possible DGA patterns is increasingly difficult 
as DGA domains are newly generated based on different algorithm 
patterns. Due to the dynamic nature of DGA, IDS rule-based approaches 
may generate high false positive rates or miss emerging DGA threats 
altogether. IP-based blacklists block access to known malicious IP 
addresses associated with DGA activity. While this approach can ef-
fectively block communication with malicious C2 servers, it does not 
address the root cause of DGA-based threats—the dynamic generation 
of domain names. Consequently, attackers can quickly switch to new IP 
addresses, rendering IP-based blacklists less effective in the long term.

Introducing Machine Learning (ML) to the challenge of detecting 
and mitigating DGA activity offers promising results (Kostopoulos et al., 
2023; Givre; Quezada et al., 2022). ML algorithms can analyse patterns 
in network traffic data to identify anomalous behaviours associated 
with DGA-generated domain names. ML models can effectively dif-
ferentiate between legitimate domain traffic and potentially malicious 
DGA activity by training on historical data and learning from diverse 
features extracted from DGA domains. ML algorithms, such as Random 
Forest (RF), Decision Trees (DT), ExtraTrees, Logistic Regression (LR), 
XGBoost (XGB), AdaBoostClassifier, and Multi-layer Perceptron (MLP) 
Classifier, can be trained on labelled datasets to recognise patterns 
indicative of DGA traffic (Kostopoulos et al., 2023). These algorithms 
can then be deployed in real-time to analyse DNS traffic, automati-
cally flagging and blocking connections to suspicious domain names 
generated by DGAs. Many researchers have developed ML models to 
detect and prevent malware using DGA techniques (Sreekanta, 2022; 
Ben, 2024; Velasco-Mata et al., 2023).

However, a recent attack from Lockbit shows that such DGA attacks 
are still effective due to the lack of a feature engineering process and 
the nature of the dataset used to train the ML model (Tyagi, 2023). 
Furthermore, most ML-based DGA detection models in prior research 
typically rely on limited datasets (often under 1 million samples), 
restricting their ability to generalise across diverse malware fami-
lies. NIOM-DGA (Nature-Inspired Optimised Machine Learning model 
for DGA detection) addresses the dynamic and evasive characteris-
tics of domain generation algorithms by leveraging a robust feature 
engineering pipeline. This pipeline integrates 78 algorithmic and sta-
tistical domain name features, including entropy measures, sequence 
alignment metrics (e.g., Levenshtein, Jaro, Needleman–Wunsch), and 
vector-based similarity measures (e.g., cosine similarity). By capturing 
complex lexical and structural patterns in domain names, NIOM-DGA 
achieves improved detection accuracy over prior models that fail to 
generalise across diverse DGA families.

Furthermore, our feature extraction process integrates alphabetic 
combinations, ensuring a comprehensive representation of domain 
characteristics. This methodology has enabled our model to achieve 
high levels of accuracy and robustness. Nevertheless, Kostopoulos et al. 
(2023) emphasise that even with reported high accuracies of traditional 
2 
ML, specific DGA malware variants may still evade detection if the 
ML features extraction process is inadequate (Kostopoulos et al., 2023; 
Quezada et al., 2022; Gogoi and Ahmed, 2023).

Conversely, we further improved accuracy by integrating Nature-
Inspired Algorithms (NIAs) for hyperparameter tuning, specifically util-
ising the Bat Algorithm (BA), Firefly Algorithm (FA), and Grey Wolf 
Optimiser (GWO). The hyperparameter configurations included n_esti-
mators set to 60 for BA and 80 for both FA and GWO, and max_depth
set to 34 for BA and 28 for FA and GWO. Additionally, the min_sam-
ples_split parameter was consistently set to 2 across all algorithms, 
while the max_features parameter varied, being set to auto for BA 
and GWO and sqrt for FA. The results demonstrate that achieving high 
accuracy is closely tied to hyperparameter tuning, as detailed in our 
findings.

In this work, we propose a NIOM-DGA model; NIOM-DGA is trained 
on 16 million distinct domain names comprising DGAs-generated and 
benign samples. Furthermore, NIOM-DGA utilises eleven (11) different 
datasets to evaluate the performance of the proposed model exten-
sively. To further enhance the performance of our model, we utilised 
advanced nature-inspired algorithm optimisation techniques (Pye et al., 
2020; Camacho Villalón et al., 2020). Specifically, algorithms such 
as Bat, Firefly, and Grey Wolf Optimiser were employed to fine-tune 
the hyperparameters of the best-performing classifier. This detailed 
optimisation aimed to ensure optimal performance and generalisability 
of the model across various DGA families, enhancing its effectiveness in 
real-world scenarios (Pye et al., 2020; Camacho Villalón et al., 2020). 
The key contributions of this work can be summarised as follows:

1. NIOM-DGA integrates 78 sophisticated domain characteristics-
algorithmic and advanced feature extraction processes that have 
not been previously observed in the literature (to the best of 
our knowledge). This novel integration of features significantly 
improved the detection capability for unknown DGAs.

2. We propose NIOM-DGA, a Nature-inspired Optimised ML-based 
novel model for DGA detection. The proposed model is trained 
on a balanced DGA-generated and benign domains dataset and 
optimised using nature-inspired algorithms to enhance detection 
performance. The NIOM-DGA model significantly outperforms 
various DGA detection models proposed in the literature.

3. To the best of our knowledge, we have employed the most com-
prehensive dataset to date, comprising over 16 million benign 
and dga domain names, to train the model and we evaluate 
the model using ten different external datasets to assess the 
generalisation capability of the proposed model.

4. We publish an updated version of the dataset derived from the 
ExtraHop Network dataset used in this research. We cleaned 
the original dataset and ensured that there were no duplicates, 
removed and cleaned the data suitable for our feature selection 
method, and also cleaned all the 37 million external domain 
names used for this research.

The subsequent sections of the paper are structured as follows. 
Section 2 offers a background on the research topic. In Section 3, we 
explore Related Work, examining methodologies from previous studies, 
and identifying gaps in the literature. Section 4 presents an overview 
of the Extrahop Network Dataset. Section 5 introduces NIOM-DGA, our 
innovative framework for DGA detection, elucidating its architecture, 
feature engineering process, and optimisation using nature-inspired 
algorithms, and detailed experimental outcomes analysis. Section 6 
conducts a Comparative Analysis with other approaches. Section 7 con-
cludes with a Conclusion and outlines Future Work. Finally, Section 8 
provides a comprehensive list of abbreviations used throughout the 
paper to ensure clarity and consistency in terminology.
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2. Background

DGAs are a significant challenge in cybersecurity due to their role 
in malware propagation and command-and-control (C2) infrastruc-
ture (Tuan et al., 2022; Suryotrisongko and Musashi, 2022). Mali-
cious actors dynamically use DGAs to generate domain names, en-
abling communication between malware-infected devices and remote 
servers (Tuan et al., 2022; Suryotrisongko and Musashi, 2022). Unlike 
static domains, DGAs create domain names dynamically, making it 
difficult for security solutions to detect and block malicious traffic (Pan 
et al., 2022; Quezada et al., 2022). DGAs use algorithms and seed values 
to generate domain names, often incorporating pseudo-randomness 
and specific patterns (Sreekanta, 2022; Velasco-Mata et al., 2023). 
This method allows the malware to establish communication channels 
with C2 servers without relying on fixed addresses that can be eas-
ily blocked (Kostopoulos et al., 2023; Sidi et al., 2019). Over time, 
DGAs have evolved to include more sophisticated techniques, such as 
using Generative Adversarial Networks (GANs), which generate domain 
names that closely resemble legitimate ones (Sidi et al., 2019; Ren et al., 
2023; Corley et al., 2020).

Additionally, DNS fast flux is another technique used for malicious 
purposes, involving rapid changes to the IP addresses associated with 
domain names (Rana and Aksoy, 2021). Attackers use DNS fast flux to 
conceal the actual location of malicious servers and evade detection 
by security solutions. By constantly changing the mapping between 
domain names and IP addresses, attackers make it challenging for se-
curity detection’s to pinpoint and block malicious infrastructure (Rana 
and Aksoy, 2021). While DNS fast flux can be effective in evading 
detection and blocking by security solutions, it also has limitations that 
make it less effective than DGAs in specific scenarios (Katz, 2021; Rana 
and Aksoy, 2021). One limitation of DNS fast flux is its reliance on 
a central server or set of servers to redirect traffic to the constantly 
changing IP addresses. This centralisation creates a single point of 
failure that security detection’s can target and disrupt. Additionally, the 
rapid changes in IP addresses associated with DNS fast flux can increase 
network traffic and latency, potentially raising suspicions and drawing 
attention to the malicious activity. In contrast, malware that uses DGAs 
generate domain names dynamically, allowing malware to establish 
communication channels with command-and-control (C2) servers with-
out relying on a centralised infrastructure like DNS fast flux. This 
decentralised approach makes DGAs more resilient to takedown efforts 
by security detection’s (Katz, 2021; Rana and Aksoy, 2021).

Moreover, another limitation of DNS’s fast flux is its susceptibility 
to detection by security solutions that monitor DNS traffic patterns. The 
rapid changes in IP addresses associated with fast flux can trigger alerts 
and anomalies in DNS logs, leading to increased scrutiny by security 
detection’s (Katz, 2021). In comparison, DGAs operate at the domain 
name level, making them less susceptible to detection based solely 
on network traffic patterns. While DNS fast flux can be effective in 
specific scenarios, its limitations make it less suitable for long-term, 
persistent communication between malware-infected devices and C2 
servers. In addition, DGAs provide a more robust and resilient method 
for establishing covert communication channels, making them a pre-
ferred choice for many malware authors and threat actors (Quezada 
et al., 2022; Velasco-Mata et al., 2023; Patil et al., 2022). Section 2.1.1 
examines three malware families and the algorithmic techniques for 
generating DGA domain names: Orchard v3, GameoverZeus and the 
BumbleBee Malware Family.

2.1. Related malware utilising DGA

Extensive research has been conducted on DGA detection by differ-
ent researchers (Pan et al., 2022; Ren et al., 2023; Kostopoulos et al., 
2023; Ahmed et al., 2022). However, limited attention has been paid 
to the technical aspect of how attackers generate these domain names. 
This section provided a brief background about DGA malware families 
and the techniques they use. Table  1 provides a concise overview of 
various malware families and their respective techniques. We select 
three specific malware instances for detailed case studies.
3 
2.1.1. Orchard v3 malware
Orchard v3 malware distinguishes itself by its unique Domain Gen-

eration Algorithm (DGA), which dynamically generates domain names 
that the malware uses for communication (Daji and Suqitian, 2022). 
The DGA is designed to create domains based on two different seed 
sources: ‘‘the current date’’ and a ‘‘blockchain-based value’’ . This 
dual-seeding approach allows Orchard v3 to generate a diverse set 
of domain names, making it more challenging for security detection 
to block all potential communication channels. The algorithm begins 
by accepting a date input , which could be the current date or any 
other specified date. This date is deterministic, meaning it is fixed and 
predictable once chosen (Daji and Suqitian, 2022). The algorithm is 
set up to run twice in a loop. On the first iteration, the DGA takes 
the current date as input and formats it as a string in the ‘‘Year-
Month-Day’’ format (for example, ‘‘2024-09-06’’) (Bader, 2024). It 
then appends the domain ‘‘ojena.duckdns.org’’ to this formatted date, 
creating a ‘‘seed’’ string. The seed string for this iteration might look 
like ‘‘2024-09-06ojena.duckdns.org’’’’ .

On the second iteration, if the ‘blockchain’ option is enabled, the 
DGA retrieves a blockchain-based seed. This seed is generated by a 
function that accesses blockchain data, possibly the Bitcoin Genesis 
Block. The retrieved blockchain seed is used directly in the same 
manner as the date seed. Both seeds (the date-based seed and the 
blockchain-based seed) are then hashed using the MD5 cryptographic 
hash function. This hashing step produces a 32-character hexadecimal 
string from each seed, which serves as a base for generating the 
second-level domains (SLDs) (Bader, 2024). The MD5 output is divided 
into four segments, each consisting of 8 characters. For example, if 
the MD5 hash is ‘‘1a2b3c4d5e6f7g8h9i0jklmnopqrstuv’’ , it will be 
divided into ‘‘‘‘1a2b3c4d’’, ‘‘5e6f7g8h’’, ‘‘9i0jklmn’’, and ‘‘opqrstuv’’ . 
These segments are used as the SLDs in the domain names. In addition, 
the algorithm pairs these second-level domains with a set of predefined 
top-level domains (TLDs), which are ‘‘‘‘.com’’, ‘‘.net’’, ‘‘.org’’, and 
‘‘.duckdns.org’’ . The pairing is achieved through a Cartesian product 
of the SLDs and TLDs, effectively generating all possible combinations 
of SLDs and TLDs. Thus, for each 8-character segment of the MD5 hash, 
four different domains are created, one for each TLD. Given four SLDs 
from the MD5 hash, the total number of domains generated per run 
of the algorithm is 16 (Bader, 2022). However, since the algorithm 
runs twice – once for the date-based seed and potentially once for the 
blockchain-based seed – it can produce up to 32 unique domains each 
day, as shown in Fig.  1.

This design ensures that new domains are generated daily (based on 
the current date) and potentially also from indeterministic blockchain 
data, making it harder for security detection’s to predict or preemp-
tively block the malware’s communication endpoints (Bader, 2022). 
Moreover, the DGA produces a new set of domains every day with 
no delay or waiting time between the generation of each domain, 
maintaining the malware’s ability to adapt to changing detection ef-
forts. The use of hexadecimal characters for the SLDs, combined with 
the diverse range of TLDs, further enhances the unpredictability and 
variability of the domains generated by Orchard v3. The overall domain 
format generated by the DGA conforms to a specific structure (Daji and 
Suqitian, 2022). The second-level domain (SLD) is an 8-character string 
derived from the MD5 hash, containing characters ranging from 0-9
and a-f  (hexadecimal format). This SLD is followed by one of the TLDs 
mentioned earlier. For example, a domain generated by the algorithm 
might look like 1a2b3c4d.com‘‘ ’’ or ‘‘5e6f7g8 h.duckdns.org’’ . The 
domain names generated exhibit a sequential property, as they follow 
a fixed generation scheme based on deterministic inputs, making them 
predictable only to those who understand the algorithm’s seeding logic. 
Orchard v3’s DGA uses both deterministic (time-based) and indeter-
ministic ((blockchain-based)) seeds to generate a diverse range of 
domains, employing MD5 hashing and a combination of predefined 
TLDs. This approach makes the malware more resilient against de-
fencive measures by continually adapting its communication channels, 
ensuring that it remains challenging to detect and block consistently 
over time.
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Table 1
Overview of malware Using DGA techniques.
 Technique Description Advantages Disadvantages Malware family 

(Ref)
 

 Random Generation Employs a pseudo-random 
number generator to create 
seemingly unpredictable 
domain names.

High domain variability, making 
prediction very challenging.

Computationally expensive 
and might result in 
nonsensical domains.

BumbleBee (Bader, 
2023)

 

 Seed-Based Generation Utilises a seed value (e.g., 
system information, 
date/time) as input for a 
deterministic algorithm to 
generate domains.

Offers a balance between 
randomness and predictability for 
rendezvous.

Vulnerable if the seed 
selection pattern or 
algorithm is discovered.

GameoverZeus (Hu 
et al., 2023; Bader, 
2023; Avertium, 
2022), Conficker 
(Wang et al., 2023)

 

 Algorithmic Generation Leverages a specific algorithm 
(e.g., cryptographic hash 
functions, linguistic rules) to 
produce domains based on a 
seed or internal state.

Creates a large and potentially 
unpredictable domain space.

Relies on the chosen 
algorithm, which could be 
identified or exploited.

Dridex (Elizarov 
and Katkov, 2023)

 

 Dictionary-Based 
Generation

Iterates through a predefined 
wordlist or dictionary, 
potentially with modifications, 
to construct domains.

Large pool of potential domains, 
making blacklisting less effective.

Relies on a static wordlist, 
potentially leading to 
domain exhaustion and 
predictability.

Mirai (Affinito 
et al., 2023)

 

 Time-based DGA Utilises the current date, time, 
or a combination as seed for 
the algorithm. Generates new 
domains at predictable 
intervals.

Easy to implement, predictable 
domain generation for 
rendezvous.

Prone to detection if the 
seed selection pattern is 
identified.

Storm Worm (Rao 
et al., 2023), 
Orchard v3 (Daji 
and Suqitian, 2022)

 

 Enumeration-based 
DGA

Iterates through a predefined 
wordlist or dictionary to 
generate domains. May use 
obfuscation techniques.

Large pool of potential domains, 
making blacklisting less effective.

Relies on a static wordlist, 
potentially leading to 
domain exhaustion.

TrickBot 
(Papadogiannaki 
and Ioannidis, 2023; 
Ding et al., 2023)

 

 Cryptographic Hash 
Function-based DGA

Employs cryptographic hash 
functions like MD5 or SHA-1 
with a seed (e.g., system 
information) to generate 
seemingly random domains.

High variability in generated 
domains, making prediction 
difficult.

Computationally expensive 
for resource-constrained 
malware.

Locky (Prasetya 
et al., 2023)

 

 Linguistic-based DGA Leverages language rules to 
construct domains. May 
combine dictionary words 
with special characters or 
mutations.

Creates seemingly legitimate 
domains, potentially evading 
basic detection.

Can be computationally 
complex and might result 
in nonsensical domains.

N/A (Zhao et al., 
2023b; Wang et al., 
2024)

 

 Multi-level DGA Combines multiple techniques 
like time-based and 
dictionary-based approaches 
for enhanced complexity.

Offers a wider domain space and 
makes prediction even harder.

Increases complexity and 
potential for malfunction 
within the malware.

Reaper 
(Sutheekshan et al., 
2024)

 

 Context-Aware DGA Adapts domain generation 
based on infected system 
characteristics (e.g., language, 
location) for better 
camouflage.

Generates domains that appear 
more legitimate in specific 
contexts.

Increases complexity and 
requires additional 
information gathering by 
the malware.

Spargo (Prasetya 
et al., 2023)

 

 Polymorphic DGA Dynamically modifies the DGA 
algorithm itself at runtime to 
hinder analysis and 
signature-based detection.

Makes the DGA harder to reverse 
engineer and detect.

Increases complexity and 
potential for bugs that 
disrupt domain generation.

Waledac (Javaheri 
et al., 2023)

 

2.1.2. GameoverZeus
The GameoverZeus malware employs a sophisticated Domain Gen-

eration Algorithm (DGA) to produce a series of domain names. This 
process begins with a hashing function, which plays a central role in 
creating unique and unpredictable domain names (Ashley and Hin-
darto, 2015). Specifically, the malware uses the MD5 hashing algorithm 
to convert various pieces of data into a fixed-size string. The hasher 
function, which is implemented in the code, takes an input string and 
applies MD5 to produce a 128-bit hash. This hash is represented as a 
hexadecimal string and serves as the foundation for generating domain 
names. To further understand this, imagine that each domain name 
is built on a unique hash value. The hasher function ensures that 
different inputs yield different hashes, creating a diverse set of possible 
domain names. This is critical for malware operations, as it helps avoid 
detection and blocking by security systems (Bader, 2024).

The next step in the process involves extracting the current date 
using the ((getDate)) function. This function breaks down the date into 
day, month, and year. The date is formatted as ((YYYY-MM-DD)), and 
then split into its components: day, month, and year. This decompo-
sition ensures that the domains generated are tied to specific dates, 
4 
adding an additional layer of variability. With the date information at 
hand, the malware proceeds to the seeder function, which generates a 
seed value essential for the domain name generation process (Ashley 
and Hindarto, 2015). This function combines a fixed ‘salt’ value with 
an index that changes with each iteration. The salt is a constant value 
that remains the same across all iterations, while the index is unique 
for each run. The seeder function calculates a remainder when the 
combined salt and index are divided by 1000 (Bader, 2022). It also 
performs integer division to get a quotient. These calculations are 
essential for producing a hash that incorporates both static and dynamic 
elements. The seed value, derived from these calculations, is then used 
to generate a hash that is composed of several parts, including the 
current year and month. This hash is created using the MD5 algorithm, 
and its value is crucial for generating domain names (Ashley and 
Hindarto, 2015).

The generateDomain function is responsible for converting this hash 
into a domain name. It does this by repeatedly dividing the hash value 
by 36 and using the remainders to select characters. Characters are 
chosen based on whether the remainder is less than 10 (digits) or
10 and above (letters). This process continues until the entire hash 
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Fig. 1. Lifespan of DGA domains seeded observed in Orchard v3 malware (Bader, 2022).
value has been processed into a string of characters. In addition, to 
finalise the domain name, the resulting string is reversed, ensuring that 
each domain name is unique and less predictable. The engine function 
orchestrates the entire domain generation process. It runs through a 
specified number of iterations, each time calling the seeder function to 
produce a new hash based on the current index and salt. This hash is 
then split into four segments, each of which is used to generate part of 
the domain name through the generateDomain function. After generat-
ing the domain name, the function appends a suffix based on the value 
of a derived variable. This suffix can be one of several options, such 
as ‘‘.com’’, ‘‘.net’’, or ‘‘.biz’’ , depending on the calculations involving 
the edx value. Finally, the generated domain names are collected into a 
list and saved to a file. The malware can use this list of domains for its 
operations, such as connecting to command-and-control servers. The 
GameoverZeus malware’s DGA combines hashing, date information, 
and modular arithmetic to create a wide array of domain names. This 
approach ensures that each domain name is unique, making it difficult 
for security systems to predict and block them. By understanding this 
process, NIOM-DGA was explicitly built to detect such malware (Bader, 
2022).

2.1.3. BumbleBee malware family
The BumbleBee Malware Family is recognised for its distribu-

tion method, which involves an ISO file containing a custom loader 
dynamic-link library (DLL). Additionally, it has been identified by 
its unique user agent, ‘‘bumblebee’’ (Bader, 2023; Avertium, 2022). 
Upon opening the attachment, the malware executes on the victim’s 
system, utilising asynchronous procedure call (APC) injection to run the 
shellcode received from the command and control (C2) server (Bader, 
2023). Bumblebee’s primary objective includes downloading and ex-
ecuting additional payloads like shellcode, Cobalt Strike, Silver, and 
Meterpreter (Bader, 2023; Avertium, 2022). In addition, Bumblebee 
employs a DGA to generate domain names for communication with the 
C2 server (Bader, 2023; Avertium, 2022). In March 2022, Bumblebee 
was observed being used by three threat groups in a DocuSign-branded 
email campaign, wherein victims were misled into downloading mali-
cious ISO files via email hyperlinks (Bader, 2023). The DGA function 
employed by Bumblebee is written in Python code. It calculates the seed 
value and generates domain names iteratively based on this seed value. 
The DGA function generates domain names comprising 11 characters 
randomly selected from a character set, followed by the suffix ‘‘.life’’.
5 
BumbleBee DGA Implementation
The DGA employed by BumbleBee generates domain names util-

ising a Linear Congruential Generator LCG. The LCG employs stan-
dard parameters, with a multiplier of 1664525 and an increment of 
1013904223. This generator produces random numbers based on a 
given seed value, which can be time-dependent or time-independent. 
If time-dependent, the seed changes based on the current year, month, 
and second, while a fixed magic seed value is utilised otherwise (Bader, 
2023). The seed generation function incorporates both time-based and 
fixed components. The function calculates the seed value for time-
dependent seeds using the current time’s year, month, and second. 
Conversely, a predetermined magic seed value is utilised for fixed 
seeds. The random number generator RNG function operates by it-
eratively applying the LCG formula to the seed value. This formula 
produces a sequence of pseudo-random numbers subsequently used to 
generate the domain names. The domain generation function (DGA) 
generates domain names by selecting characters from a predefined 
character set and appending the suffix ‘‘.life’’ to them. The DGA it-
eratively applies the RNG function to produce a series of domain 
names (Bader, 2023).
Seed Generation Function

The seed function generates the initial seed value the RNG uses. It 
takes two parameters: magic, a fixed value used for time-independent 
seeds, and time, an optional parameter representing the current time. If 
the time parameter is provided, the function calculates the seed value 
based on the current second, month (minus 1 to adjust to the range 
0–11), and year. Otherwise, it uses default values for these components.
Random Number Generator (RNG) Function

The rand function implements a Linear Congruential Generator
LCG, a type of pseudo-random number generator. It takes an initial 
seed value r and iteratively applies a specific formula to produce a 
sequence of pseudo-random numbers. The formula involves multiplica-
tion by a constant multiplier 1664525 and the addition of a continuous 
increment 1013904223. These constants provide desirable statistical 
properties to the generated random numbers.
Domain Generation Function

The dga function utilises the random number generator rand to 
generate domain names. It iteratively generates characters for the 
domain name using a predefined character set charset . The function 
generates a pseudo-random number for each character using the rand
function and selects a character from the charset based on this number. 
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It repeats this process for each character in the domain name and 
appends the suffix .life to form the complete domain name.
Functionality

The code first generates an initial seed value using the seed func-
tion. The rand function then uses this seed value to produce a sequence 
of pseudo-random numbers. The dga function uses these random num-
bers to generate domain names. The final output is a series of domain 
names with the suffix .life generated based on the given seed value. 
Understanding the methods and algorithms employed by BumbleBee 
can aid in research for feature extraction processes aimed at detecting 
similar domain names. BumbleBee utilises a deterministic algorithm to 
generate domain names based on a seed value, resulting in seemingly 
random yet predictable outcomes.

3. Related work

The Domain Name System (DNS) is vital for communication over 
the internet, translating user-friendly domain names into IP addresses 
[2]. DGAs generate Second-Level Domain (SLD) labels due to limited 
top-level domain (TLD). A top-level domain (TLD) with Internation-
alised Domain Names (IDNs) allows international domain registration 
from all over the world (Pan et al., 2022). Due to limited TLD us-
age, threat actors leverage a second-level domain name to generate 
a Domain generation algorithm (DGA). DGA are the way forward 
for cybercriminals, as they dynamically generate domain names to 
evade detection and control the malware Command and control server 
(C2) (Sidi et al., 2019; Pan et al., 2022; Ren et al., 2023; Kostopoulos 
et al., 2023). Malware leveraging DGA techniques can create more than 
1 million domains daily, complicating threat detection (Kostopoulos 
et al., 2023; Quezada et al., 2022).

These DGA-generated domains, such as ‘‘ tbvbnnkkbvsabc1239.ku’’, 
serve as decoys for communication with Command  Control servers 
(C2) (Pan et al., 2022; Sidi et al., 2019; Kostopoulos et al., 2023). This 
type of malware utilises dynamically generated DGA domain names to 
communicate with command and control servers and can effectively 
evade detection by frequently switching between domains (Bader, 
2022, 2024). This dynamic tactic challenges traditional security mea-
sures, hindering threat mitigation (Velasco-Mata et al., 2023; Patil 
et al., 2022). In addition, these DGA techniques let bots generate DNS 
requests based on a predetermined seeding mechanism known to the 
C&C servers. A small set of domain names are registered and expected 
to be requested for resolution by the bots (Ren et al., 2023; Ben, 2024). 
These domain names correspond to valid IP addresses of command and 
control servers, enabling the bots to locate and connect to them. The 
bots usually send many requests to the DNS (Domain Name System), 
leading to some requests being successfully resolved while others result 
in invalid domain names (Corley et al., 2020; Kostopoulos et al., 2023). 
When a domain name is invalid, the DNS server responds with an 
‘‘NXDOMAIN’’ message, indicating that the domain does not exist. 
Despite most requests yielding no responses, a limited number of DGA 
domain names are resolved to the C&C IP addresses (Pan et al., 2022; 
Kostopoulos et al., 2023; Gogoi and Ahmed, 2023).

The substantial volume of DGA domain name queries and the reg-
ular changes to the seeding mechanism pose a significant challenge to 
traditional domain name blocklisting methods like SURBL, Spamhaus 
DBL, and Malware Domain Blocklist (Brandstaetter, 2024). These con-
ventional methods rely on blocklists containing domain names linked 
to various threats, including spam, phishing, malware distribution, 
and botnet command and control servers. In contrast, DGA tactics 
involve constant domain name hopping and alterations, making these 
traditional methods ineffective in adequately blocking the DGA tech-
nique (Hu et al., 2022).

In the ever-evolving landscape of the last ten years, researchers have 
extensively employed Machine Learning (ML) techniques to address 
the challenge of DGAs (Quezada et al., 2022; Shahzad et al., 2021). 
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Machine Learning offers several advantages over traditional methods, 
such as domain name blocklisting, including SURBL, Spamhaus DBL, 
and Malware Domain Blocklist. Firstly, ML techniques can adapt and 
evolve. Unlike static blocklists that rely on predefined criteria to iden-
tify malicious domains, ML models can continuously learn from new 
data and update their algorithms to detect emerging threats (Highnam 
et al., 2021; Kostopoulos et al., 2023). This adaptability is crucial in the 
ever-changing landscape of cyber threats, where new malware variants 
and evasion techniques constantly emerge (Randhawa et al., 2023). 
Secondly, ML-based approaches can analyse large volumes of data and 
identify complex patterns that may need to be apparent to human 
analysts. In addition, ML models can accurately distinguish between be-
nign and malicious activities by leveraging features extracted from vast 
datasets containing benign and malicious domain names, even when 
adversaries employ sophisticated evasion tactics (Kostopoulos et al., 
2023; Yan et al., 2023). Moreover, ML algorithms can offer a more 
holistic approach to threat detection by considering multiple features 
and indicators of malicious behaviour. Cutting-edge research in this 
field has been undertaken by Ding et al. (2023), Shahzad et al. (2021), 
Velasco-Mata et al. (2023), Bader (2024), Kostopoulos et al. (2023), 
wherein researchers have developed a range of machine learning clas-
sifiers proficient in identifying DGA domains. These achievements are 
demonstrated through notable discoveries documented in studies like 
those by Kostopoulos et al. (2023), Javed et al. (2023), Tuan et al. 
(2022), Randhawa et al. (2021).

Nevertheless, the efficiency of this ML DGA detection is paramount. 
One key importance in ML DGA detection is feature extraction and 
dataset significance (Kostopoulos et al., 2023). Several machine learn-
ing algorithms, such as CNN, Bi-LSTM, Random Forest, LSTM, Decision 
Trees, SVM, Naive Bayes, kNN, and Gradient Boosting, were utilised 
in a machine learning research project aimed at classifying Domain 
Generation Algorithm (DGA) domains (Kostopoulos et al., 2023; Javed 
et al., 2023; Pan et al., 2022). The experiment carried out by the 
majority of these papers (Pan et al., 2022; Gogoi and Ahmed, 2023; 
Quezada et al., 2022; Sreekanta, 2022; Velasco-Mata et al., 2023) high-
lighted several gaps, including a constrained dataset with only a 0.1% 
representation of DGA domains, the absence of external experimental 
datasets for evaluating proposed models, and limited features with 
inadequate feature engineering.

A recent experiment by Kostopoulos et al. (2023) was worthwhile 
leveraging 50 features during the features engineering process com-
pared to the limited features utilised by Pan et al. (2022), Gogoi 
and Ahmed (2023). Furthermore, Kostopoulos et al. (2023) inves-
tigated the integration of Machine Learning with SHapley Additive 
exPlanation (SHAP) for enhancing model interpretability. However, 
the model’s effectiveness has limitations in feature extraction and the 
use of small sample datasets. In the experiment, Adaptive Boosting 
(AdaBoost) achieved the lowest accuracy at 92.32%, while eXtreme 
Gradient Boosting (XGBoost) obtained the highest accuracy at 94.81%. 
Another study by Bronjon Gogoi and Ahmed, Gogoi and Ahmed (2023) 
yielded remarkable findings with an accuracy rate of 99%. Following a 
single epoch, the model achieved impressive accuracy. According to the 
experiment, early stopping techniques were employed to mitigate the 
risk of overfitting the model. However, the feature extraction process in 
the Bronjon Gogoi and Ahmed (Gogoi and Ahmed, 2023) experiment is 
limited due to the leveraged feature vectorisation method. They have 
tokenisation google.co.in into Unicode characters; both (Kostopoulos 
et al., 2023; Randhawa et al., 2021; Nowroozi et al., 2022) disagree 
that top-level domains (TLD) are not necessary during the feature 
extraction process since domain generation algorithms do not generate 
the top-level-domains names.

Given the challenges identified in existing state-of-the-art papers 
on DGA and the limitations of traditional methods such as block-
listing, the ML approach is needed. Another limitation of ML DGA 
detection is the Adversarial techniques, particularly those employing 
Generative Adversarial Networks (GANs), have significantly impacted 
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the effectiveness of Machine Learning (ML) classifiers in detecting 
Domain Generation Algorithm (DGA) domains (Ren et al., 2023; Corley 
et al., 2020). GANs are trained on DGA domain datasets and generate 
synthetic domains that closely resemble real domain names, posing 
a substantial challenge to traditional classifiers (Sidi et al., 2019; 
Corley et al., 2020). For example, MaskGAN, utilising characters like 
underscores and dashes evasion tactics, successfully evades previous 
classifiers by decreasing the detection from 0.977% to 0.495% by 
synthesising DGA domains (Sidi et al., 2019). Despite high accuracy in 
generating look-alike domains, GAN-generated domains may still be de-
tectable by advanced models focusing on domain string characteristics 
with algorithm capabilities, such as the proposed NIOM-DGA model.

3.1. Challenges in feature extraction process

Machine learning algorithms have shown promise in addressing 
Malware that takes advantage of DGA-generated domain names by 
learning patterns and features indicative of DGA-generated domains 
(Kostopoulos et al., 2023; Ding et al., 2023). By training machine learn-
ing classifiers on labelled datasets containing benign and malicious 
domain names, researchers can develop models capable of accurately 
classifying benign and data-generated domain names (Highnam et al., 
2021; Sivaguru et al., 2020). Features such as domain length, character 
distribution, and entropy have proven to be valuable indicators of DGA 
activity (Highnam et al., 2021; Moşolea and Oprişa, 2023; Javed et al., 
2023).

However, the effectiveness of machine learning-based DGA detec-
tion methods is lacking in terms of the quality and diversity of the 
training data (N. et al., 2022). Malware authors constantly evolve 
their techniques to evade detection, requiring ongoing updates and 
improvements to detection algorithms. While many studies emphasise 
extracting features from Top-Level Domains (TLDs), this process in-
cludes tokenising the dataset using n-grams. The domains and their 
TLDs are also vectorised and fed into the machine-learning training 
process (Velasco-Mata et al., 2023; Patsakis and Casino, 2021; Wang 
and Guo, 2021). Contrary to these findings, Kostopoulos et al. (2023) 
explain that this approach proves ineffective in detecting DGA attacks. 
They further highlight that machine learning may struggle to identify 
DGAs without a proper feature extraction process. Such challenges 
require innovative approaches to the feature engineering and selection 
process. Pan et al. (2022), Wang and Guo (2021), Patsakis and Casino 
(2021) did not explicitly address the feature engineering process.

However, Kostopoulos et al. (2023) significantly improved the fea-
ture engineering process by leveraging 50 different features, resulting 
in an impressive 94% accuracy. In their experiments, Kostopoulos 
et al. (2023) utilised various features extracted from domain names to 
enrich their analysis, including Shannon entropy ,Frequency s, Vowel 
Frequency , and domain length. Each feature serves a distinct purpose, 
capturing different facets of domain names without extracting TLDs. 
For instance, Shannon entropy measures a random variable’s average 
‘‘surprisal’’, which is particularly applicable to continuous probability 
distributions (Zhao et al., 2023a; Brandstaetter, 2024). Frequency_s
examines character distribution to identify anomalies, while Vowel 
Frequency and Length  offer insights into the linguistic composition 
and domain name size, facilitating classification across different do-
main types. In contrast, the feature set employed by Kostopoulos et al. 
(2023) is comparatively narrower in scope than the one we proposed. 
Therefore, feature extraction is crucial in detecting DGAs effectively. 
Through detailed analysis and experimentation, it becomes evident 
that selecting and utilising appropriate features significantly impact the 
accuracy and efficacy of the DGA detection ML model. We introduce 
a Nature-inspired Optimised ML-based model (NIOM-DGA) to address 
these research gaps.

NIOM-DGA leverages the strengths of ML techniques, which offer 
adaptability and scalability compared to static blocklisting methods. 
NIOM-DGA is built on domain characteristics + algorithm features 
7 
extraction; NIOM-DGA uses a large dataset that can effectively detect 
emerging threats posed by DGAs, which constantly evolve to evade 
detection. Building upon the previous ML model, NIOM-DGA also 
addresses gaps identified in earlier studies, such as adversarial tech-
niques. NIOM-DGA employs a comprehensive set of diverse features 
and leverages nature-inspired optimisation for hyperparameter tuning 
to detect DGA-generated and benign domains effectively.

4. ExtraHop networks dataset description

Using a large dataset is crucial for training a model when detecting 
DGAs because of the sheer volume and diversity of domain names 
that can be generated by DGA malware. DGAs are designed to create 
many unique domain names, often hundreds of thousands or mil-
lions (Kemmerling, 2023; Patil et al., 2022). Malware frequently uses 
these domains to establish communication channels with command 
and control servers or to distribute malicious payloads. By training a 
model on a large dataset, the model can recognise the patterns and 
characteristics common to DGA-generated domain names. This method 
includes features such as the domain length, the presence of certain 
characters or character sequences, and statistical properties of the 
domain names. Using a large dataset ensures that the model is exposed 
to various DGA-generated domain names, making it more robust and 
capable of generalising to new, unseen examples (Sharma, 2023).

Consequently, in this research, we employed a recent and one of the 
most comprehensive dataset called the Extrahop Network dataset (Ex-
trahop Network, 2024), which contains over 16 million balanced, be-
nign and dga domains. Moreover, we employ another ten (10) datasets 
to evaluate and consolidate the performance of our model on external 
data sources. Table  2 summarises the training and testing description of 
the dataset. Our primary dataset originates from ExtraHop Networks, 
which was used to train NIOM-DGA. The ExtraHop Networks DGA 
detection dataset is publicly accessible on their GitHub repository. 
It is the cornerstone for our research or the only dataset used to 
train/test the model with an 80/20 split. Extrahop Network (2024). The 
ExtraHop Networks dataset is encapsulated within a single file, dga-
training-data-encoded-v3.json.gs, containing an extensive 
collection of domain entries. Encoded in JSON format, each entry 
comprises of two fundamental components: the domain name and 
its corresponding threat classification. The classification distinguishes 
between benign domains and those generated by DGAs, providing 
invaluable insight into the prevalence of malicious activities.

This dataset is thoroughly curated, encompassing over 16 mil-
lion domain entries. Furthermore, the distribution between benign 
and DGA-generated domains is approximately balanced, facilitating 
robust model training and evaluation. In preparation for analysis, we 
conducted comprehensive data cleaning procedures. Specifically, we 
removed extraneous metadata, such as the ‘‘threat’’ label, and trans-
formed the dataset into a more accessible CSV format. Consequently, 
the cleaned CSV file presented a concise and structured dataset repre-
sentation. Each entry in the dataset consists of a domain name paired 
with its corresponding label. We then transform each domain into bi-
nary feature representations that capture its algorithmic characteristics. 
These features are subsequently used to train and test the NIOM-DGA 
model.

4.1. External validation: NIOM-DGA training and testing datasets

While significant research efforts have been devoted to detecting 
DGAs (Highnam et al., 2021; Sivaguru et al., 2020; Suryotrisongko 
and Musashi, 2022; Tuan et al., 2022; Javed et al., 2023), there 
remains a need for further external validation experiments to assess the 
effectiveness of developed models. We recognise that external model 
validation is often overlooked despite its crucial role in ensuring the 
model’s efficiency.
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Table 2
Overview of all datasets used in conjunction with NIOM-DGA.
 No. Dataset (Ref) Purpose Samples Description  
 1. Extrahop Network Dataset (Extrahop Network, 2024) Training/Testing 16,246,014 Contains 16 m balanced DGA and benign dataset.  
 2. Aayush V Dataset (Shah, 2025) Testing 16,773,525 Balance DGA and benign domain names.  
 3. baderj Dataset (Bader, 2024) Testing 265,538 Collection of DGAs generated domain names.  
 4. DGArchive Dataset (DGArchive, 2025) Testing 5632,234 Archive of DGAs generated domain names.  
 5. harpomaxx Dataset (Harpo, 2023) Testing 8342,022 Comprises both DGA and benign domain names.  
 6. Abakumov Dataset (Abakumov, 2024) Testing 825,991 Contained Benign and DGA generated domains names. 
 7. Charles Dataset (Givre) Testing 160,003 Dataset of DGA and benign domain names.  
 8. siyad Dataset (Mestour, 2021) Testing 1404,792 Comprises both DGA and benign domain names.  
 9. OmurcanTATAR Dataset (Tatar, 2024) Testing 1029,822 Contained Benign and DGA generated domains names. 
 10. Sabin Dataset (Sharma Paudel) Testing 1542,771 Umbrella benign domains and DGA domains names.  
 11. Rafael Dataset (Gregório, 2023) Testing 2017,746 Majestic legit benign and DGA domains and names.  
 

Recognising this gap, we employed a comprehensive evaluation 
methodology by leveraging publicly available DGA datasets to evaluate 
the NIOM-DGA model thoroughly (Table  2). Understanding that the 
performance of machine learning classifiers is intrinsically tied to the 
quality and diversity of the training data (El-Ghamry et al., 2023,?; 
Mehta et al., 2023), we took a proactive approach by integrating 
character-based and algorithm-based detection techniques into NIOM-
DGA. This combination enables NIOM-DGA to draw upon the strengths 
of each feature extraction process, thereby empowering it to make 
informed decisions in domain threat detection scenarios. It is important 
to note that the results of this extensive detection and evaluation en-
deavour will be thoroughly discussed in the experiment results Section, 
providing valuable insights into the efficacy and performance of the 
NIOM-DGA framework in real-world settings.

5. Nature-inspired optimised ML-based model (NIOM-DGA)

5.1. Research methodology

The study utilises two primary datasets as shown in Fig.  2: the 
Extrahop Network dataset and an External dataset. The Extrahop Net-
work dataset provides real-world network traffic data, serving as a 
reliable basis for analysing the behaviour of Domain Generation Al-
gorithms (DGAs). The External dataset is employed to validate the 
generalisability of the proposed model, ensuring its applicability across 
diverse scenarios. Both datasets undergo thorough preprocessing to 
prepare them for analysis. This involves cleaning the data to remove 
noise, normalising feature values for consistency, and addressing miss-
ing or incomplete entries. These preprocessing steps ensure that the 
datasets are optimised for the subsequent stages of feature extraction 
and analysis.

Feature extraction is carried out to derive meaningful attributes 
that effectively represent the behaviour of DGAs. This process focuses 
on identifying key patterns within the data, including character fre-
quency distributions, Shannon entropy analysis, Jaro entropy values, 
and Vowel-Consonant ratio. These features are carefully designed to 
highlight the distinctive characteristics of malicious domains. To pri-
oritise the most significant features, SHAP values (SHapley additive 
explanations) are employed as a robust interpretability technique as 
shown in Fig.  5. This approach quantifies the contribution of each 
feature, ensuring that only the most influential attributes are retained 
for training the machine learning models.

The machine learning models are trained using the Extrahop dataset,
with the data divided into training and testing subsets to facilitate 
evaluation on unseen samples. During the training phase, experiments 
are conducted with various classifiers and their performance is assessed 
using key evaluation metrics. To further enhance the performance 
of the models, the hyperparameters are fine-tuned through nature-
inspired optimisation techniques. This optimisation ensures that the 
models achieve peak performance on the training dataset, reducing the 
risk of overfitting while maximising predictive accuracy. The model, 
referred to as NIOM-DGA, is rigorously tested on both the Extrahop 
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and External datasets. Its performance is evaluated using metrics such 
as accuracy, precision, recall, and F1 score, providing a comprehensive 
assessment of its effectiveness. The results are compared with the base-
line methods to contextualise the advances achieved by the proposed 
approach.

An overview of the NIOM-DGA model is presented in Fig.  3. The 
proposed model integrates domain-specific features and employs ad-
vanced algorithms for character-based feature extraction compared to 
the previous DGA ML. The NIOM-DGA technique uses advanced feature 
extraction techniques to extract 78 distinct features from domain names 
to significantly enhance the discriminatory capabilities of classifiers, 
enabling more precise and reliable detection of Domain Generation 
Algorithm (DGA) attacks. In addition, we researched how these DGA 
are created, as discussed in the background Section, and we leveraged 
the same technique for feature extraction. Many previous works related 
to ML DGA detection in the literature are constrained by small or 
synthetic datasets, which limits their findings’ generalisability and real-
world applicability (Pan et al., 2022; Kostopoulos et al., 2023; Gogoi 
and Ahmed, 2023; Quezada et al., 2022).

The proposed NIOM-DGA research fills this gap by conducting com-
prehensive evaluations on large-scale, diverse datasets representative 
of real-world network traffic. The NIOM-DGA contains a sophisticated 
character-algorithm features extraction process. This extraction is an 
extensive set of 78 distinct features, as shown in Fig.  3 . These features 
form the basis for our machine learning (ML) models, which include 
Random Forest (RF), XGBoost (XGB), Decision Tree (DT), AdaBoost-
Classifier, ExtraTreesClassifier, Multi-layer Perceptron (MLP), and Lo-
gistic Regression. To enhance the performance of the NIOM-DGA, 
we go a step further by optimising its parameters. We achieve this 
by leveraging nature-inspired algorithms such as the Bat Algorithm, 
Grey Wolf Optimise, and Firefly Algorithm (El-Ghamry et al., 2023,?; 
Mehta et al., 2023). These optimisation techniques fine-tune the best-
performing ML algorithm’s hyperparameters, thereby increasing our 
model’s accuracy (Pye et al., 2020).

We rigorously test the NIOM-DGA to thoroughly evaluate its effec-
tiveness. We employ 10 external datasets representing unique scenarios 
to assess how well our model detects unknown DGA-generated and 
benign domain names. This thorough evaluation process allows us 
to measure the NIOM-DGA’s robustness and versatility across various 
real-world scenarios.

5.2. Data preprocessing and features extraction

Our data preprocessing ensured consistency and readiness for anal-
ysis. The dataset was already in a clean and structured JSON for-
mat, containing domain names and their classification labels (e.g.,
{‘‘domain’’: ‘‘wgegrlteegwrrrerwi’’, ‘‘threat’’:
‘‘dga’’}). We converted it to CSV for compatibility with our ex-
traction tools, verified there were no duplicate entries, and focused on 
the key fields for feature extraction. We then applied additional feature 
extraction processes, as detailed in Table  3 including Domain_Length, 
Substring_Count,Special_Character_Presence, a-s_Frequency_with_Num-
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Fig. 2. Research design methodology.
bers and Substring_Count, preparing the data for effective machine 
learning training and testing. Additionally, applying advanced fea-
ture engineering techniques facilitated the extraction of pertinent fea-
tures, enhancing the dataset’s utility for comprehensive analysis and 
modelling.

Table  3 presents an overview of features which are extracted from 
domain names in this study. While most of the feature type names 
shown in Table  3 are self-explanatory, in this section, we explain Shan-
non_Entropy, Jaro_Similarities, Cosine_Similarity , Needleman_Wun-
sch_Feature, and Smith_Waterman_Feature.
9 
Shannon_Entropy: Shannon Entropy serves as a metric to mea-
sure the randomness or unpredictability of a domain name. Originally 
proposed by Claude Shannon in information theory, this measure quan-
tifies the uncertainty or disorder within a given data set (Kostopoulos 
et al., 2023). In the context of domain names, Shannon Entropy helps 
discern patterns or irregularities that may indicate suspicious or algo-
rithmically generated domains. Higher entropy values suggest greater 
complexity and randomness, potentially signalling the presence of a 
DGA (Hsu et al., 2021). The Shannon Entropy 𝐻(𝑋) of a discrete 
random variable 𝑋 with probability mass function 𝑃 (𝑋) is calculated 
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Fig. 3. Block Diagram of NIOM-DGA.
Table 3
Feature name(s), Sequence number, and Descriptions.
 Feature name(s) Sequence number Description  
 Domain_Length 1 Length of the domain name  
 Shannon_Entropy 2 Measure of randomness or unpredictability of a domain name 
 Jaro_Similarities 3 Measure of similarity between two strings  
 Cosine_Similarity 4 Measure of cosine angle between two vectors  
 Needleman_Wunsch_Feature 5 Algorithm for global sequence alignment  
 Smith_Waterman_Feature 6 Algorithm for local sequence alignment  
 Character_Set_Diversity 7 Number of unique characters in the domain  
 Levenshtein_Distance 8 Minimum number of single-character edits  
 Query_Sequence_Entropy 9 Measure of uncertainty or randomness of a query sequence  
 Vowel_Cluster_Count 10 Count of consecutive vowel sequences  
 A_s_with_Numbers_Character 11–36 Presence of specific characters (A-s) with numbers  
 Consonant_Cluster_Count 37 Count of consecutive consonant sequences  
 D_Character_Count 38 Count of the letter ’D’  
 Dash_Presence 39 Presence of a dash character  
 Date_Time_Character_Presence 40 Presence of date and time characters  
 Double_Character_Presence 41 Presence of repeated characters  
 Consecutive_Sequence_Length 42 Length of the longest consecutive character sequence  
 Lowercase_Letter_Count 43 Count of lowercase letters  
 Mean_Substring_Length 44 Mean length of all substrings  
 Numeral_Presence 45 Presence of numeral characters  
 Special_Character_Presence 46 Presence of special characters  
 Substring_Count 47 Count of all substrings  
 Unconventional_Structure_Presence 48 Presence of unconventional domain structures  
 Unique_Character_Count 49 Count of unique characters  
 Unique_Character_Ratio 50 Ratio of unique characters to total characters  
 Unique_Substring_Count 51 Count of unique substrings  
 Vowel_Consonant_Ratio 52 Ratio of vowels to consonants  
 a-s_Frequency_with_Numbers 53–78 Frequency of lowercase letters (a-s)  
10 
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as: 
𝐻(𝑋) = −

∑

𝑖
𝑃 (𝑋 = 𝑥𝑖) log2(𝑃 (𝑋 = 𝑥𝑖)) (1)

Where 𝑥𝑖 represents each possible outcome of the random variable 
𝑋.

Jaro_Similarities:
Jaro Similarity is a metric used to determine the similarity between 

two strings, primarily focusing on character matches and transposi-
tions (Basak et al., 2023). It calculates the proportion of matching 
characters between two strings, such as benign and dga domains, 
considering the number of matching characters and their positions. 
By quantifying the degree of resemblance between domain names, 
Jaro Similarity aids in distinguishing legitimate domains from those 
generated by DGA. The Jaro similarity coefficient 𝐉 between two strings 
𝑠1 and 𝑠2 of lengths 𝑙𝑒𝑛_𝑠1 and 𝑙𝑒𝑛_𝑠2 respectively is defined as: 

𝐽 = 1
3

(

𝐦
𝑙𝑒𝑛_𝑠1 + 𝐦

𝑙𝑒𝑛_𝑠2 + 𝐦 − 𝑡
𝐦

)

(2)

Here, 𝐦 represents the count of matching characters, while 𝑡 denotes 
the number of transpositions—instances where matching characters are 
not in the correct sequence (Sahni and Rajasekaran, 2023).

Jaro Similarity provides a numerical indication of how closely two 
strings resemble each other, with 𝐽 = 1 indicating identical strings and 
𝐽 = 0 implying no character matches.

Cosine_Similarity: Cosine Similarity measures the cosine of the an-
gle between two vectors in a multi-dimensional space, commonly used 
in natural language processing and text mining tasks (Kirişci, 2023; 
Hasan and Ferdous, 2024). We leverage cosine Similarity to assess 
the similarity between domain name feature vectors extracted from 
datasets. By evaluating the geometric relationship between feature vec-
tors, Cosine Similarity helps identify clusters or patterns indicative of 
DGA-generated domains. Higher cosine similarity values imply greater 
resemblance between domain features, assisting in classifying malicious 
and benign domains (Kirişci, 2023; Hasan and Ferdous, 2024). The 
Cosine Similarity cosine_similarity between two feature vectors 𝐀 and 
𝐁 is calculated as: 
cosine_similarity = 𝐀 ⋅ 𝐁

‖𝐀‖‖𝐁‖
(3)

Where 𝐀 ⋅𝐁 represents the dot product of the two vectors, and ‖𝐀‖
and ‖𝐁‖ are the magnitudes of the vectors.

Needleman_Wunsch_Feature: The Needleman–Wunsch feature
leverages this algorithm to align pairs of domain names, identifying 
conserved regions and gaps between characters between two strings 
(Hu et al., 2024; Likić, 2007). In this case its between benign domains 
and dga domains. By aligning sequences and assigning similarity scores 
based on matches, mismatches, and gaps, the Needleman–Wunsch 
feature aids in quantifying the degree of resemblance or divergence 
between these domain names. This facilitates the detection of subtle 
variations and patterns characteristic of DGA-generated domains. The 
Needleman–Wunsch alignment score NW(𝑠1, 𝑠2) between two strings 𝑠1
and 𝑠2 is calculated using dynamic programming as: 
NW(𝑠1, 𝑠2) = max

𝑖,𝑗
{𝑀𝑖,𝑗} (4)

Where 𝑀𝑖,𝑗 represents the score of the best alignment ending at 
position 𝑖 in string 𝑠1 and position 𝑗 in string 𝑠2.

Smith_Waterman_Feature: Similar to the Needleman–Wunsch al-
gorithm, the Smith–Waterman algorithm is also employed for sequence 
alignment but focuses on local sequence similarity rather than global 
alignment (Chagneau et al., 2024; Mehri et al., 2023). The Smith–
Waterman feature evaluates pairs of benign and dga domain names 
to identify regions of maximal similarity within a regional context. By 
pinpointing areas of significant overlap or divergence between domain 
sequences, the Smith–Waterman feature enhances the granularity of 
similarity assessment, offering insights into specific motifs or patterns 
associated with DGA-generated domains. The Smith–Waterman align-
ment score SW(𝑠1, 𝑠2) between two strings 𝑠1 and 𝑠2 is calculated 
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similarly to Needleman–Wunsch, but allowing negative scores and 
selecting the maximum local score instead of the global score. 
SW(𝑠1, 𝑠2) = max

𝑖,𝑗
{𝑀𝑖,𝑗} (5)

Where 𝑀𝑖,𝑗 represents the score of the best alignment ending at 
position 𝑖 in string 𝑠1 and position 𝑗 in string 𝑠2.

As depicted in Fig.  4, showcasing SHAP feature importance grouped 
into eight categories, we evaluated the model to ensure the significance 
of all features contributing to the results. Initially, our feature set 
comprised over 100 variables. However, as detailed in Section 5.2, 
certain features proved impractical and were consequently eliminated 
to enhance model efficiency using SHAP as shown in Fig.  5. While 
these removals optimised the model, we attempted to remove the 
’special_character_presence’ feature due to its limited use, as indi-
cated by SHAP analysis. Unfortunately, this adjustment resulted in a 
marginal decrease in model accuracy by 0.4%.

5.3. NIOM-DGA features importance

Feature importance is crucial during the ML training phase; these 
features encapsulate the essential characteristics of the data and play 
a pivotal role in determining the performance and effectiveness of 
ML models. Properly engineered features enable algorithms to identify 
patterns, make accurate predictions, and derive meaningful insights 
from complex datasets. In addition, the quality and relevance of ML 
features directly impact the success and efficacy of machine learning 
applications across various domains, making them a critical component 
of the ML workflow.

Subsequently, Effective feature selection and engineering are piv-
otal as they directly impact the model’s ability to learn meaning-
ful patterns and make accurate predictions. During our research, we 
identified over 100 features. However, upon assessing feature im-
portance, we found that some features could have contributed more 
effectively to the machine learning process, so we removed them. These 
included Non-ASCII_Character_Presence, Misspelled_Words_Presence,
IDN_Homograph_Presence, and Cyrillic_or_Chinese_Presence.

To understand feature importance, we utilised XGBoost alongside 
SHAP (SHapley Additive exPlanations), a method in ML that explains 
individual predictions by assigning values to features (Kostopoulos 
et al., 2023). SHAP quantitatively assesses the contribution of each 
feature to model predictions using the formula: 

𝝓𝑖(𝑓 ) =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)] (6)

The Shapley value 𝝓𝑖(𝑓 ) for feature 𝑖 in function 𝑓 . It considers all 
possible subsets 𝑆 of features excluding 𝑖, calculates the difference in 
model output when adding feature 𝑖 to subset 𝑆, and averages these 
differences over all subsets. This provides a fair assessment of each 
feature’s contribution to the model’s predictions.

In Fig.  5, we present an analysis of features derived from SHAP 
(SHapley Additive exPlanations) values, which quantitatively assess the 
contribution of each feature to the model’s predictions. In Fig.  5(a) 
to (f), we examine the interconnected narratives of various feature 
pairs shaping model predictions. In these plots, features that dom-
inantly influence name classifications are depicted along with their 
values. Red denotes features related to DGA domain names, and blue 
colours contribute to benign domain names. Consequently, the inter-
action between Character_Set_Diversity and Cosine_Similarity reveals 
modest variations in Character_Set_Diversity , while Cosine_Similarity
exhibits a more pronounced influence. Another feature we analyse is
Shannon_Entropy’s diverse impact, which contrasts with Cosine_Simi-
larity’s less pronounced influence, shaping the model’s understanding 
of the data. In addition, we analyse the Levenshtein_Distance, while 
the feature impacts predictions moderately, while Shannon_Entropy’s
broader impact contributes to the model’s prediction. Furthermore,
Cosine_Similarity and Mean_Substring_Length interact moderately,
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Fig. 5. Empirical analysis of SHAP values for feature pair interactions: red indicates DGA traffic; blue indicates benign traffic. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
showcasing a more comprehensive influence range alongside the Co-
sine_Similarity . Consequently, we also look at the Domain_Length
and Numeral_Presence, which complement the model’s effectiveness. 
Lastly, we analyse that Vowel_Consonant_Ratio significantly influ-
ences predictions, while Cosine_Similarity’s effect is less pronounced. 
The SHAP scatter plots unveil better feature effectiveness interactions 
shaping model predictions.

5.4. Learning and experimental phase

NIOM-DGA employs a variety of machine learning algorithms, in-
cluding Random Forest (RF), Logistic Regression (LR), Decision Trees 
(DT), XGBoost (XGB), AdaBoost (AB), Extremely Randomised Trees 
(ERT), and Multilayer Perceptron (MLP) for model training using the 
ExtraHop Dataset with 80/20 train test splits. Following classification, 
the top-performing model is selected and subjected to further refine-
ment using nature-inspired optimisation algorithms. These algorithms 
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include the bat algorithm (BA), grey wolf optimiser (GWO) and fire-
fly algorithm (FA). The aim is to enhance classification accuracy by 
fine-tuning the selected model.

We evaluate the classification results of ML algorithms based on 
the outcomes of the confusion matrix. Confusion matrix summaries the 
results of machine learning classifiers based on correct and incorrect 
predictions by using the following metrics:

• True Positive (TP): The number of DGA domains correctly clas-
sified as DGA.

• True Negative (TN): The number of benign domains correctly 
classified as benign.

• False Positive (FP): The number of benign domains incorrectly 
classified as DGA.

• False Negative (FN): The number of DGA domains incorrectly 
classified as benign.

The performance metrics we consider include accuracy (Eq.  (7)), 
recall (Eq.  (8)), precision (Eq.  (9)), and F1-score (Eq.  (10)), which are 
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Fig. 6. ROC Curves of Classifiers Trained with ExtraHop Networks Dataset.
 

Table 4
Performance comparison of ML classifiers.
 Classifier Accuracy Recall Precision F-measure 
 RF 96 95 96 96  
 XGB 95 94 95 94  
 DT 93 93 93 93  
 AdaBoost 91 90 90 90  
 ExtraTrees 96 95 96 95  
 MLP 94 94 94 94  
 LR 90 87 92 90  
 GB 92 90 93 91  

derived from the confusion matrix. 
Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(7)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

𝐹1 = 2 × Precision × Recall
Precision + Recall (10)

Table  4 presents the classification results of NIOM-DGA by employ-
ing the ExtraHop Network dataset. As shown in Table  4, RF outperforms 
all the other classifiers (ExtraTrees, XGB, DT, Adaboost, MLP, LR and 
GB) in terms of classification results. Similarly, Fig.  6 illustrates the 
receiver operating characteristic (ROC) curves obtained from classifiers 
trained on the Extrahop Network dataset.

As shown in Fig.  6, the ROC curves depict the false positive rate 
(FPR) on the 𝑥-axis and the true positive rate (Recall) on the 𝑦-
axis. These curves reveal significant outcomes, with Random Forest as 
compared to ExtraTrees, XGB, DT, Adaboost, MLP, LR and GB. Sub-
sequently, to further increase the efficacy of NIOM-DGA, we integrate 
NIAs to determine the optimal hyper-parameter settings for the most 
effective classifier (RF) (Rafiq et al., 2022). Our considerations contain 
the Bat algorithm (BA), Firefly algorithm (FA), and Grey Wolf optimiser 
(GWO) for tuning the hyper-parameters of RF.

5.5. Random forest hyper-parameters proposed by NIAs

We employ NIAs for hyper-parameter optimisation, leveraging their 
ability to navigate complex optimisation spaces effectively (Rafiq et al., 
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Table 5
Hyper-parameters for RF proposed by NIAs.
 Hyper-parameter BA FA GWO 
 n_estimators 60 80 80  
 max_depth 34 28 28  
 min_sample_split 2 2 2  
 max_features auto sqrt auto  

2022). Unlike traditional methods, NIAs draw inspiration from natural 
phenomena, mimicking processes like evolution and swarm behaviour 
to tackle challenging optimisation problems (Mehta et al., 2023; El-
Ghamry et al., 2023). They have a proven track record of success in 
various applications, particularly in optimising the hyperparameters 
of complex machine-learning models (Mehta et al., 2023; Pye et al., 
2020). By mimicking natural processes, NIAs offer a unique approach 
to exploring and exploiting the search space, often leading to superior 
solutions. They exhibit robustness, scalability, and versatility, making 
them suitable for optimising diverse machine-learning algorithms. NIAs 
handle high-dimensional parameter spaces and non-linear relationships 
efficiently, empowering effective fine-tuning of models to enhance 
performance and generalisation ability.

During the training phase, we evaluated multiple machine learning 
algorithms, including Random Forest (RF), XGBoost (XGB), Decision 
Trees (DT), AdaBoostClassifier, Extra Trees Classifier, MLP Classifier, 
Logistic Regression, and Gradient Boosting Classifier. Each algorithm 
underwent rigorous scrutiny, focusing on pivotal performance metrics 
such as accuracy, recall, precision, and F-measure. Among these al-
gorithms, Random Forest (RF) outperformed all the other classifiers, 
showcasing remarkable accuracy at 96%. In order to achieve even 
better results, we employ NIAs to tune the hyper-parameters of RF 
classifiers for DGA detection.

Table  5 present the optimal hyper-parameters setting for RF de-
termined by NIAs for classifying DGA-generated and benign domain 
names. Subsequently, Table  6 presents the classification results achieved
by NIOM-DGA, a DGA-generated and benign domains classifier based 
on RF and optimised using NIAs. Compared to the RF classifier re-
sults in Table  4 and Fig.  7, NIOM-DGA remarkably strengthens the 
performance by employing NIAs to determine the optimal setting of 
hyper-parameters (upto 98% accuracy in case of BA) (see Tables  7–11).
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Fig. 7. Combined Classifier Performance after NIA Optimisation (Accuracy, Recall, Precision, F-measure).
Table 6
Performance of Random Forest after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%) 
 Bat Algorithm 98 99 98 98  
 Grey Wolf Optimiser 97 98 97 97  
 Firefly Algorithm 92 93 92 92  

Table 7
Performance of XGBoost after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%) 
 Bat Algorithm 95 94 96 95  
 Grey Wolf Optimiser 95 93 94 93  
 Firefly Algorithm 92 92 92 93  

Table 8
Performance of Decision Tree after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%) 
 Bat Algorithm 95 96 96 95  
 Grey Wolf Optimiser 94 90 90 89  
 Firefly Algorithm 92 92 94 93  

Table 9
Performance of AdaBoost after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%) 
 Bat Algorithm 93 92 93 92  
 Grey Wolf Optimiser 93 92 92 91  
 Firefly Algorithm 95 94 95 94  

Table 10
Performance of Logistic Regression after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%) 
 Bat Algorithm 93 93 92 93  
 Grey Wolf Optimiser 93 92 93 91  
 Firefly Algorithm 93 93 92 93  

Many model classifiers performed better with nature-inspired opti-
misation (NIA) techniques, which can be attributed to a combination 
of hyperparameter settings and the inherent characteristics of each 
optimisation algorithm.
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Table 11
Performance of Gradient Boosting after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%) 
 Bat Algorithm 93 94 93 92  
 Grey Wolf Optimiser 93 92 92 91  
 Firefly Algorithm 93 94 95 94  

From the data in the tables, it is evident that the BA consistently 
outperforms the other nature-inspired optimisation techniques, such as 
the GWO and the FA, across various classifiers. This superior perfor-
mance can be attributed to the specific hyperparameter settings chosen 
for each model, which are tailored for the optimal functioning of BA. 
For instance, BA used a higher number of n_estimators (60 for BA, 
compared to 80 for GWO and FA), which may contribute to more 
robust learning through increased model complexity and diversity. 
Additionally, BA’s use of max_depth values that are slightly higher 
(34 for BA) might help capture more complex patterns in the data, 
leading to better generalisation and higher performance metrics such 
as accuracy, recall, and precision.

In contrast, the GWO shows strong performance, particularly in 
Random Forest and XGBoost classifiers, where it performs second to 
BA. The max_depth of 28, a lower value than BA, suggests that GWO 
might be better suited for simpler models, avoiding overfitting while 
still achieving high performance. GWO’s lower number of n_estimators
compared to BA may be compensated by its efficiency in optimising 
hyperparameters, achieving solid performance with fewer estimators.

The FA, despite its more conservative hyperparameter settings (with
n_estimators at 80 for both FA and GWO), consistently trails behind the 
other two in terms of overall performance. This suggests that FA may 
require further tuning of its parameters or may not be as effective in 
capturing complex patterns in the dataset compared to BA and GWO.

Thus, the differences in performance are influenced by the interplay 
between the hyperparameters and the optimisation strengths of each 
algorithm. The Bat Algorithm, with its ability to explore the hyperpa-
rameter space more effectively, results in more optimal configurations, 
leading to better classification performance. The GWO, with a balanced 
approach to hyperparameter selection, also performs well but not to 
the same extent as BA. The FA, while effective in certain contexts, 
may need further refinement to compete with BA and GWO in terms 
of classifier performance.
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Table 12
NIOM-DGA: Performance on external datasets.
 No. Dataset (Ref) Samples Accuracy Precision Recall F-measure 
 1. Aayush V Dataset (Shah, 2025) 16,773,525 0.890 0.893 0.880 0.718  
 2. baderj Dataset (Bader, 2024) 265,538 0.968 0.980 0.968 0.959  
 3. DGArchive Dataset (DGArchive, 2025) 5632,234 0.991 0.991 0.991 0.991  
 4. harpomaxx Dataset (Harpo, 2023) 8342,022 0.981 0.911 0.971 0.981  
 5. Abakumov Dataset (Abakumov, 2024) 825,991 0.971 0.991 0.961 0.991  
 6. Charles Dataset (Givre) 160,003 0.991 0.981 0.991 0.961  
 7. siyad Dataset (Mestour, 2021) 1404,792 0.896 0.893 0.878 0.885  
 8. OmurcanTATAR Dataset (Tatar, 2024) 1029,822 0.931 0.915 0.925 0.920  
 9. Sabin Dataset (Sharma Paudel) 1542,771 0.965 0.961 0.895 0.893  
 10. Rafael Dataset (Gregório, 2023) 2017,746 0.906 0.895 0.905 0.900  
Table 13
Comparison with existing works with NIOM-DGA.
 Proposed model Year External experiment ML algorithms Features number Testing amount Accuracy 
 DGA-RF (Hoang and Vu, 2021) 2021 X Random Forest 42 1500,000 90%  
 AGD - FANCI (Wang and Guo, 2021) 2021 X LSTM 21 1500,000 78%  
 AGD - LSTM (Wang and Guo, 2021) 2021 X Bi-LSTM 21 300,000 86%  
 AGD - Bi-LSTM (Wang and Guo, 2021) 2021 X CNN 21 190,000 88%  
 AGD - CNN (Wang and Guo, 2021) 2021 X CNN-LSTM 21 180,000 89%  
 AGD-CNN-LSTM (Wang and Guo, 2021) 2021 X LSTM-Att 21 210,000 89%  
 Bi-LSTM (Pan et al., 2022) 2022 ✓ LSTM 12 220,000 97%  
 HAGDetector (Liang et al., 2022) 2022 ✓ LR 21 300,000 95%  
 CANINE -C (Gogoi and Ahmed, 2023) 2023 X CANINE 21 90,000 99%  
 BiGRU-ATT (Yan et al., 2023) 2023 ✓ BiGRU 20 1000,000 96%  
 MLP- DGA (Abhiram et al., 2023) 2023 X MLP 7 700,000 97.24%  
 DGA-SVM (Moşolea and Oprişa, 2023) 2023 ✓ SVM 30 600,000 96%  
 SESAME (Weissgerber et al., 2023) 2023 ✓ SESAME 28 900,000 83.89%  
 DGA-T-C (Ding et al., 2023) 2023 ✓ CNN 18 1000,000 96%  
 XAI x SHAP (Kostopoulos et al., 2023) 2023 X XGBoost 50 900,000 94.81%  
 Bi-LSTM (Hassaoui et al., 2024) 2024 X LSTM 21 1000,000 95%  
 HDDN (Chen et al., 2024) 2025 X CNN + LSTM 39-char + 75 seq 674,898 93.86%  
 HDDN (Chen et al., 2024) 2025 X CNN + LSTM 39-char + 75 seq 1000,000 90.09%  
 NIOM-DGA 2025 ✓ Random Forest 78 3200,000 98.3%  
After optimising the model with NIAs, we selected the best NIAs 
classifiers. We conducted further evaluations employing 10 external 
datasets (Table  2) for further testing. We considered the
hyper-parameters setting determined by BA as it demonstrated superior 
performance compared to FA and GWO hyper-parameters settings when 
evaluated using the base dataset (Table  6). The combined samples 
in the external datasets for testing cover over thirty-seven million 
(37,883,844 approx.) benign and DGA-generated domain names, show-
casing the comprehensive scope of the external evaluation conducted 
with NIOM-DGA. Table  12 presents the performance of NIOM-DGA 
on external datasets. As shown in Table  12, NIOM-DGA performs 
remarkably well when tested on the external datasets with an average 
accuracy of 95.7%.

Alongside classification outcomes, we evaluate the time complexity 
of NIAs as a performance metric for NIOM-DGA. Fig.  8 illustrates 
the time each NIA (BA, FA, and GWO) takes to optimise the hyper-
parameters of RF across ten distinct external datasets. Each NIA began 
with a population size of 50, with a maximum of 100 iterations. 
BA demonstrates superior performance over FA and GWO in terms 
of time complexity and classification outcomes. FA and GWO also 
deliver commendable classification results; however, they require sig-
nificantly more time than BA to identify optimal hyper-parameters 
across each dataset. Consequently, NIOM-DGA favours BA over FA and 
GWO for hyper-parameter optimisation to enhance RF performance in 
DGA classification.

6. Comparative analysis with other approaches

Table  13 compares NIOM-DGA with existing techniques proposed in 
the literature. As shown in the Table  13, only few of the related works 
(Bi-LSTM (Hassaoui et al., 2024; Pan et al., 2022), BiGRU-ATT (Yan 
et al., 2023), SVM (Moşolea and Oprişa, 2023), SESAME (Weissger-
ber et al., 2023), and T-C (Ding et al., 2023)) conducted external 
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experiments to evaluate their models. In contrast, although NIOM-DGA 
achieved up to 98% classification accuracy by using the base dataset 
(ExtraHop Network dataset), it also considered ten external datasets for 
validation. It achieved up to 95.7% classification accuracy on average. 
The number and quality of features directly impact a model’s ability to 
capture intricate patterns within the data. As shown in Table  13, NIOM-
DGA employs up to 78 distinct features extracted from domain names, 
significantly more than those listed in the comparison table. However, 
models with higher feature numbers often possess a greater capacity 
for distinguishing complex relationships at the risk of over-fitting. 
Conversely, models with fewer features might exhibit improved gen-
eralisation but overlook crucial variations in the dataset. NIOM-DGA 
addresses these issues by thoroughly selecting the essential features for 
the model, with 78 distinct features. Finally, in terms of accuracy, apart 
from CANINE-C (Gogoi and Ahmed, 2023), NIOM-DGA significantly 
outperforms all the reported techniques in Table  13. Although CANINE-
C (Gogoi and Ahmed, 2023) reports up to 99% classification accuracy, 
their testing set size is limited (up to 90,000). In contrast, NIOM-DGA 
employs over 3.2 Million samples from the ExtraHop Network dataset 
for testing and reports up to 98% classification accuracy.

7. Conclusion and future work

Our investigation into Domain Generation Algorithm (DGA) detec-
tion commenced with a thorough review of existing methodologies 
and datasets. To establish a robust foundation for the study, we drew 
upon a range of publicly available datasets and prior research (Chen 
et al., 2024; Kostopoulos et al., 2023; Abakumov, 2024; Javed et al., 
2023; Pye et al., 2020). To address the inherent challenges associated 
with DGA detection, we employed the recent and most comprehensive 
ExtraHop dataset (to the best of our knowledge) comprising over 16 
million DGA and benign domain names. This dataset consists of over 
53 different DGA families, ensuring an extensive representation of 
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Fig. 8. Running Time Comparison of NIA for Random Forest Model.
the various techniques utilised by malicious actors to generate DGAs. 
Drawing upon insights from previous research, we thoroughly curated 
this dataset to ensure its representatives of real-world dga domain 
patterns. We used advanced feature extraction techniques to extract 
and integrate 78 distinct features from the domain names, ranging 
from linguistic properties to structural complexity and algorithm-based 
feature extraction. This holistic approach allowed us to significantly 
enhance the discriminatory capabilities of our classifiers significantly, 
facilitating more precise and reliable detection of DGA attacks.

Furthermore, we propose the NIOM-DGA ML model trained on 78 
characteristic-algorithmic features extracted from the Extrahop Net-
work Dataset and then optimised using nature-inspired algorithms. 
Our experiment results show that NIOM-DGA achieves up to 98% 
classification accuracy on the Extrahop Network dataset. To further 
consolidate the performance of our proposed model, we tested NIOM-
DGA by employing 10 external datasets consisting of over 37 million 
domain names and achieved over 95.7% accuracy on average. Finally, 
our comparative analysis presents that NIOM-DGA significantly outper-
forms the related approaches proposed in the recent literature. The 
use of Nature-Inspired Algorithms (NIAs) and feature selection and 
hyperparameter optimisation has demonstrated significant improve-
ments in DGA detection accuracy and generalisability. This highlights 
the transformative potential of NIAs in enhancing traditional machine 
learning algorithms for more robust and effective detection.

Deploying NIOM-DGA in real-world scenarios could face several 
challenges. The model’s reliance on large datasets and feature opti-
misation may introduce significant computational overhead, limiting 
scalability in resource-constrained environments. Additionally, as DGA 
techniques evolve, the model may require frequent updates and re-
training to maintain its detection accuracy. Integrating NIOM-DGA into 
existing systems like SIEM, EDR, XDR, or cloud security platforms could 
be complex, requiring customisation to align with specific workflows. 
Real-time domain name analysis may also introduce latency, which 
could affect immediate threat detection. Furthermore, the model’s per-
formance might vary depending on the diversity of data across different 
organisations, requiring fine-tuning for specific environments.

In contracts, to address these challenges, several solutions can be 
implemented. To manage computational overhead, optimising the fea-
ture selection process and leveraging hardware acceleration, such as 
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GPUs or distributed computing, could enhance scalability and effi-
ciency. To tackle the adaptability to evolving DGAs, the model could 
incorporate continual learning mechanisms, allowing it to adapt to 
new DGA patterns through periodic updates and incremental train-
ing with fresh data. For integration complexity, designing modular 
interfaces and offering pre-built integration options with common se-
curity platforms would simplify deployment and reduce customisation 
efforts. To mitigate latency concerns, optimising the model for faster 
inference times and implementing a hybrid approach that combines 
pre-processing with real-time analysis could help maintain performance 
without sacrificing speed. Finally, to address the challenge of data 
diversity, the model could be trained on a broader range of datasets 
and offer configuration options to tailor it to specific organisational 
environments, ensuring better accuracy and adaptability.

Future work in this domain could delve deeper into adversarial 
attacks and defence strategies. Exploring Generative Adversarial Net-
works (GANs) to generate adversarial examples could uncover model 
weaknesses, leading to more robust defence mechanisms. Adversary 
retraining strategies could be further investigated to enhance model 
resilience against attacks. In contrast, novel techniques like ensemble 
learning and model distillation offer additional avenues for improving 
model security and resilience.

8. Abbreviations

This research uses various abbreviations to describe concepts, tech-
niques, and algorithms relevant to the study’s objectives, as shown in 
Table  14.

Dataset used for this research

The cleaned dataset that was used for features engineering can be 
downloaded here NIOM-DGA-Research.

Extrahop network dataset

This dataset comprises 16 million Domain Generation Algorithm 
(DGA) and benign domains. The dataset is accessible through the 
following link: ExtrahopNetworkDataset (Extrahop Network, 2024).

https://github.com/daniyyell-dev/NIOM-DGA-Research
https://github.com/ExtraHop/DGA-Detection-Training-Dataset
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Table 14
Abbreviations and definitions.
 Acronym Definition Acronym Definition  
 AdaBoost Adaptive Boosting ExtraTrees Extremely Randomised Trees  
 APC Asynchronous Procedure Call FA Firefly Algorithm  
 BA Bat Algorithm FN False Negative  
 BiLSTM Bidirectional Long Short-Term Memory FP False Positive  
 C&C/C2 Command and Control Server GANs Generative Adversarial Networks  
 CNN Convolutional Neural Network GB Gradient Boosting  
 CSV Comma-Separated Values GWO Grey Wolf Optimiser  
 EDR Endpoint Detection Response SIEM Security Information and Event Management 
 DLL Dynamic-Link Library IDS Intrusion Detection System  
 DGA Domain Generation Algorithm LSTM Long Short-Term Memory  
 DNS Domain Name System LR Logistic Regression  
 DT Decision Trees MLP Multi-Layer Perceptron  
 RF Random Forest ML Machine Learning  
 RNG Random Number Generation NIA Nature-Inspired Algorithm  
 SHAP SHapley Additive exPlanation NLP Natural Language Processing  
 SLD Second-Level Domains RNN Recurrent Neural Network  
 TLD Top-Level Domains RAT Remote Access Trojans  
 TN True Negative XAI eXplainable Artificial Intelligence  
 TP True Positive XGB eXtreme Gradient Boosting  
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