
Computers & Security 157 (2025) 104561

A
0
n

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Full length article

NIOM-DGA: Nature-inspired optimised ML-based model for DGA detection
Daniel Jeremiah a, Husnain Rafiq a,∗, Vinh Thong Ta b, Muhammad Usman a, Mohsin Raza c,
Muhammad Awais c
a Department of Computer Science, Edge Hill University, Ormskirk, UK
b Cranfield Defence and Security, Shrivenham, UK
c Department of Computer Science, University of East Anglia, Norwich, UK

A R T I C L E I N F O

Keywords:
Domain Generation Algorithm
Machine Learning
Malware
Nature Inspired Optimisation

 A B S T R A C T

Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random
domains daily for Command-and-Control (C&C) communication, challenging traditional detection methods.
This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms
(NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including
several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and
generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing
on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%.
Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly
improves DGA detection compared to existing methods, advancing practical threat detection capabilities.
1. Introduction

In recent years, ransomware has emerged as a significant cyberse-
curity threat, with a notable increase in global cyber attacks (Tyagi,
2023; Griffiths, 2023; Ford, 2024). Statistics from 2021 reveal a con-
cerning surge, with over 623.3 million attempted ransomware incidents
recorded, marking a substantial 105% rise compared to the previous
year 2022 (Griffiths, 2023). Despite a slight decrease of 23% in 2022,
ransomware attacks remain prevalent, posing persistent challenges to
individuals and organisations around the world. Between 2023 and
2024, the global share of users affected by ransomware attacks in-
creased to 0.44%, a 0.02 percentage point rise . The average ransom
payment in 2024 reached $2.73 million, nearly $1 million higher than
in 2023 . Ransomware damages are expected to hit $265 billion annu-
ally by 2031 (Kaspersky, 2025; Chen et al., 2024). DGAs are pivotal
in ransomware operations in Command-and-Control (C&C), enabling
threat actors to dynamically generate many domain names for both
malware agents and the C&C Server. By employing DGAs, cybercrimi-
nals can obfuscate their malicious activities, making it challenging for
traditional detection mechanisms to identify and mitigate ransomware
threats effectively (Kemmerling, 2023; Tuan et al., 2022).

Several malware’s families utilises DGAs to locate and connect
to C&C servers. This method allows malware creators to evade the
domain blacklist of the C&C server. This technique poses challenges
for security measures to blacklist all potential domains generated by

∗ Corresponding author.
E-mail address: rafiqh@edgehill.ac.uk (H. Rafiq).

DGAs. Since threat actors only register a minor portion of these do-
mains, DGA-infected malware generates numerous unresolved DNS
queries. Some can lead to a resolved IP that can connect to the C&C
server (Anderson et al., 2016; Shahzad et al., 2021). In addition,
relying solely on the heuristic blocking method is unreliable for security
solutions, as legitimate computing systems may generate unresolved
DNS queries for benign purposes. The significance of DGAs extends
beyond ransomware, which includes various other forms of malware
proliferation. In addition, Botnets, Trojans, information stealers or
Remote Access Trojans (RATs), adware, and spyware are among the
many types of malware that use DGA to establish communication
channels with (C&C) Server (Suryotrisongko and Musashi, 2022; Sun
and Liu, 2023). Botnets, for instance, utilise DGAs to facilitate coordi-
nation among compromised devices, enabling attackers to orchestrate
large-scale distributed denial-of-service (DDoS) attacks or propagate
additional malware (Sea and Law, 2023; Ding et al., 2023). Trojans and
RATs employ DGAs to maintain stealthy communication with command
and control servers, allowing threat actors to remotely control compro-
mised systems and exfiltrate sensitive information (Weissgerber et al.,
2023). Similarly, adware and spyware employ DGAs to evade detection
and persistently monitor and collect user data for malicious purposes.

Traditional methods such as domain blocklists, DNS sinkholing, IDS
rules, and IP-based blacklists, fall short in effectively mitigating DGA-
based threats (Zhao et al., 2023a). For instance, domain blocklists
https://doi.org/10.1016/j.cose.2025.104561
Received 17 September 2024; Received in revised form 20 May 2025; Accepted 31
vailable online 21 June 2025
167-4048/© 2025 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
 May 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://orcid.org/0000-0001-6421-9245
mailto:rafiqh@edgehill.ac.uk
https://doi.org/10.1016/j.cose.2025.104561
https://doi.org/10.1016/j.cose.2025.104561
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Jeremiah et al. Computers & Security 157 (2025) 104561
can be easily circumvented as DGAs are capable of generating over
50,000 domains daily, rendering static blacklists obsolete almost im-
mediately (Highnam et al., 2021; Sun and Liu, 2023). DNS sinkholing
and rule-based IDS systems also struggle with the high rate of false
positives, often exceeding 20%–30%, due to benign domains occasion-
ally exhibiting similar entropy or structure to malicious ones (Highnam
et al., 2021; Sun and Liu, 2023).

In addition, DNS sinkholing which redirects traffic from malicious
domains to controlled servers, allowing organisations to intercept com-
munications intended for DGA-generated domains and disrupt mali-
cious activity (Quezada et al., 2022). While effective in theory, DNS
Sinkholing requires significant expertise and resources to set up and
maintain sinkhole servers. The above-cited reactive measures rely on
identifying and redirecting traffic to known malicious domains, making
them less effective against unknown DGA-generated domains. Another
traditional method employ IDS rule-based systems, which rely on pre-
defined rules to detect and block network traffic associated with DGA
activity (Zhao et al., 2023a). However, defining accurate and exhaus-
tive rules to cover all possible DGA patterns is increasingly difficult
as DGA domains are newly generated based on different algorithm
patterns. Due to the dynamic nature of DGA, IDS rule-based approaches
may generate high false positive rates or miss emerging DGA threats
altogether. IP-based blacklists block access to known malicious IP
addresses associated with DGA activity. While this approach can ef-
fectively block communication with malicious C2 servers, it does not
address the root cause of DGA-based threats—the dynamic generation
of domain names. Consequently, attackers can quickly switch to new IP
addresses, rendering IP-based blacklists less effective in the long term.

Introducing Machine Learning (ML) to the challenge of detecting
and mitigating DGA activity offers promising results (Kostopoulos et al.,
2023; Givre; Quezada et al., 2022). ML algorithms can analyse patterns
in network traffic data to identify anomalous behaviours associated
with DGA-generated domain names. ML models can effectively dif-
ferentiate between legitimate domain traffic and potentially malicious
DGA activity by training on historical data and learning from diverse
features extracted from DGA domains. ML algorithms, such as Random
Forest (RF), Decision Trees (DT), ExtraTrees, Logistic Regression (LR),
XGBoost (XGB), AdaBoostClassifier, and Multi-layer Perceptron (MLP)
Classifier, can be trained on labelled datasets to recognise patterns
indicative of DGA traffic (Kostopoulos et al., 2023). These algorithms
can then be deployed in real-time to analyse DNS traffic, automati-
cally flagging and blocking connections to suspicious domain names
generated by DGAs. Many researchers have developed ML models to
detect and prevent malware using DGA techniques (Sreekanta, 2022;
Ben, 2024; Velasco-Mata et al., 2023).

However, a recent attack from Lockbit shows that such DGA attacks
are still effective due to the lack of a feature engineering process and
the nature of the dataset used to train the ML model (Tyagi, 2023).
Furthermore, most ML-based DGA detection models in prior research
typically rely on limited datasets (often under 1 million samples),
restricting their ability to generalise across diverse malware fami-
lies. NIOM-DGA (Nature-Inspired Optimised Machine Learning model
for DGA detection) addresses the dynamic and evasive characteris-
tics of domain generation algorithms by leveraging a robust feature
engineering pipeline. This pipeline integrates 78 algorithmic and sta-
tistical domain name features, including entropy measures, sequence
alignment metrics (e.g., Levenshtein, Jaro, Needleman–Wunsch), and
vector-based similarity measures (e.g., cosine similarity). By capturing
complex lexical and structural patterns in domain names, NIOM-DGA
achieves improved detection accuracy over prior models that fail to
generalise across diverse DGA families.

Furthermore, our feature extraction process integrates alphabetic
combinations, ensuring a comprehensive representation of domain
characteristics. This methodology has enabled our model to achieve
high levels of accuracy and robustness. Nevertheless, Kostopoulos et al.
(2023) emphasise that even with reported high accuracies of traditional
2
ML, specific DGA malware variants may still evade detection if the
ML features extraction process is inadequate (Kostopoulos et al., 2023;
Quezada et al., 2022; Gogoi and Ahmed, 2023).

Conversely, we further improved accuracy by integrating Nature-
Inspired Algorithms (NIAs) for hyperparameter tuning, specifically util-
ising the Bat Algorithm (BA), Firefly Algorithm (FA), and Grey Wolf
Optimiser (GWO). The hyperparameter configurations included n_esti-
mators set to 60 for BA and 80 for both FA and GWO, and max_depth
set to 34 for BA and 28 for FA and GWO. Additionally, the min_sam-
ples_split parameter was consistently set to 2 across all algorithms,
while the max_features parameter varied, being set to auto for BA
and GWO and sqrt for FA. The results demonstrate that achieving high
accuracy is closely tied to hyperparameter tuning, as detailed in our
findings.

In this work, we propose a NIOM-DGA model; NIOM-DGA is trained
on 16 million distinct domain names comprising DGAs-generated and
benign samples. Furthermore, NIOM-DGA utilises eleven (11) different
datasets to evaluate the performance of the proposed model exten-
sively. To further enhance the performance of our model, we utilised
advanced nature-inspired algorithm optimisation techniques (Pye et al.,
2020; Camacho Villalón et al., 2020). Specifically, algorithms such
as Bat, Firefly, and Grey Wolf Optimiser were employed to fine-tune
the hyperparameters of the best-performing classifier. This detailed
optimisation aimed to ensure optimal performance and generalisability
of the model across various DGA families, enhancing its effectiveness in
real-world scenarios (Pye et al., 2020; Camacho Villalón et al., 2020).
The key contributions of this work can be summarised as follows:

1. NIOM-DGA integrates 78 sophisticated domain characteristics-
algorithmic and advanced feature extraction processes that have
not been previously observed in the literature (to the best of
our knowledge). This novel integration of features significantly
improved the detection capability for unknown DGAs.

2. We propose NIOM-DGA, a Nature-inspired Optimised ML-based
novel model for DGA detection. The proposed model is trained
on a balanced DGA-generated and benign domains dataset and
optimised using nature-inspired algorithms to enhance detection
performance. The NIOM-DGA model significantly outperforms
various DGA detection models proposed in the literature.

3. To the best of our knowledge, we have employed the most com-
prehensive dataset to date, comprising over 16 million benign
and dga domain names, to train the model and we evaluate
the model using ten different external datasets to assess the
generalisation capability of the proposed model.

4. We publish an updated version of the dataset derived from the
ExtraHop Network dataset used in this research. We cleaned
the original dataset and ensured that there were no duplicates,
removed and cleaned the data suitable for our feature selection
method, and also cleaned all the 37 million external domain
names used for this research.

The subsequent sections of the paper are structured as follows.
Section 2 offers a background on the research topic. In Section 3, we
explore Related Work, examining methodologies from previous studies,
and identifying gaps in the literature. Section 4 presents an overview
of the Extrahop Network Dataset. Section 5 introduces NIOM-DGA, our
innovative framework for DGA detection, elucidating its architecture,
feature engineering process, and optimisation using nature-inspired
algorithms, and detailed experimental outcomes analysis. Section 6
conducts a Comparative Analysis with other approaches. Section 7 con-
cludes with a Conclusion and outlines Future Work. Finally, Section 8
provides a comprehensive list of abbreviations used throughout the
paper to ensure clarity and consistency in terminology.

D. Jeremiah et al. Computers & Security 157 (2025) 104561
2. Background

DGAs are a significant challenge in cybersecurity due to their role
in malware propagation and command-and-control (C2) infrastruc-
ture (Tuan et al., 2022; Suryotrisongko and Musashi, 2022). Mali-
cious actors dynamically use DGAs to generate domain names, en-
abling communication between malware-infected devices and remote
servers (Tuan et al., 2022; Suryotrisongko and Musashi, 2022). Unlike
static domains, DGAs create domain names dynamically, making it
difficult for security solutions to detect and block malicious traffic (Pan
et al., 2022; Quezada et al., 2022). DGAs use algorithms and seed values
to generate domain names, often incorporating pseudo-randomness
and specific patterns (Sreekanta, 2022; Velasco-Mata et al., 2023).
This method allows the malware to establish communication channels
with C2 servers without relying on fixed addresses that can be eas-
ily blocked (Kostopoulos et al., 2023; Sidi et al., 2019). Over time,
DGAs have evolved to include more sophisticated techniques, such as
using Generative Adversarial Networks (GANs), which generate domain
names that closely resemble legitimate ones (Sidi et al., 2019; Ren et al.,
2023; Corley et al., 2020).

Additionally, DNS fast flux is another technique used for malicious
purposes, involving rapid changes to the IP addresses associated with
domain names (Rana and Aksoy, 2021). Attackers use DNS fast flux to
conceal the actual location of malicious servers and evade detection
by security solutions. By constantly changing the mapping between
domain names and IP addresses, attackers make it challenging for se-
curity detection’s to pinpoint and block malicious infrastructure (Rana
and Aksoy, 2021). While DNS fast flux can be effective in evading
detection and blocking by security solutions, it also has limitations that
make it less effective than DGAs in specific scenarios (Katz, 2021; Rana
and Aksoy, 2021). One limitation of DNS fast flux is its reliance on
a central server or set of servers to redirect traffic to the constantly
changing IP addresses. This centralisation creates a single point of
failure that security detection’s can target and disrupt. Additionally, the
rapid changes in IP addresses associated with DNS fast flux can increase
network traffic and latency, potentially raising suspicions and drawing
attention to the malicious activity. In contrast, malware that uses DGAs
generate domain names dynamically, allowing malware to establish
communication channels with command-and-control (C2) servers with-
out relying on a centralised infrastructure like DNS fast flux. This
decentralised approach makes DGAs more resilient to takedown efforts
by security detection’s (Katz, 2021; Rana and Aksoy, 2021).

Moreover, another limitation of DNS’s fast flux is its susceptibility
to detection by security solutions that monitor DNS traffic patterns. The
rapid changes in IP addresses associated with fast flux can trigger alerts
and anomalies in DNS logs, leading to increased scrutiny by security
detection’s (Katz, 2021). In comparison, DGAs operate at the domain
name level, making them less susceptible to detection based solely
on network traffic patterns. While DNS fast flux can be effective in
specific scenarios, its limitations make it less suitable for long-term,
persistent communication between malware-infected devices and C2
servers. In addition, DGAs provide a more robust and resilient method
for establishing covert communication channels, making them a pre-
ferred choice for many malware authors and threat actors (Quezada
et al., 2022; Velasco-Mata et al., 2023; Patil et al., 2022). Section 2.1.1
examines three malware families and the algorithmic techniques for
generating DGA domain names: Orchard v3, GameoverZeus and the
BumbleBee Malware Family.

2.1. Related malware utilising DGA

Extensive research has been conducted on DGA detection by differ-
ent researchers (Pan et al., 2022; Ren et al., 2023; Kostopoulos et al.,
2023; Ahmed et al., 2022). However, limited attention has been paid
to the technical aspect of how attackers generate these domain names.
This section provided a brief background about DGA malware families
and the techniques they use. Table 1 provides a concise overview of
various malware families and their respective techniques. We select
three specific malware instances for detailed case studies.
3
2.1.1. Orchard v3 malware
Orchard v3 malware distinguishes itself by its unique Domain Gen-

eration Algorithm (DGA), which dynamically generates domain names
that the malware uses for communication (Daji and Suqitian, 2022).
The DGA is designed to create domains based on two different seed
sources: ‘‘the current date’’ and a ‘‘blockchain-based value’’ . This
dual-seeding approach allows Orchard v3 to generate a diverse set
of domain names, making it more challenging for security detection
to block all potential communication channels. The algorithm begins
by accepting a date input , which could be the current date or any
other specified date. This date is deterministic, meaning it is fixed and
predictable once chosen (Daji and Suqitian, 2022). The algorithm is
set up to run twice in a loop. On the first iteration, the DGA takes
the current date as input and formats it as a string in the ‘‘Year-
Month-Day’’ format (for example, ‘‘2024-09-06’’) (Bader, 2024). It
then appends the domain ‘‘ojena.duckdns.org’’ to this formatted date,
creating a ‘‘seed’’ string. The seed string for this iteration might look
like ‘‘2024-09-06ojena.duckdns.org’’’’ .

On the second iteration, if the ‘blockchain’ option is enabled, the
DGA retrieves a blockchain-based seed. This seed is generated by a
function that accesses blockchain data, possibly the Bitcoin Genesis
Block. The retrieved blockchain seed is used directly in the same
manner as the date seed. Both seeds (the date-based seed and the
blockchain-based seed) are then hashed using the MD5 cryptographic
hash function. This hashing step produces a 32-character hexadecimal
string from each seed, which serves as a base for generating the
second-level domains (SLDs) (Bader, 2024). The MD5 output is divided
into four segments, each consisting of 8 characters. For example, if
the MD5 hash is ‘‘1a2b3c4d5e6f7g8h9i0jklmnopqrstuv’’ , it will be
divided into ‘‘‘‘1a2b3c4d’’, ‘‘5e6f7g8h’’, ‘‘9i0jklmn’’, and ‘‘opqrstuv’’ .
These segments are used as the SLDs in the domain names. In addition,
the algorithm pairs these second-level domains with a set of predefined
top-level domains (TLDs), which are ‘‘‘‘.com’’, ‘‘.net’’, ‘‘.org’’, and
‘‘.duckdns.org’’ . The pairing is achieved through a Cartesian product
of the SLDs and TLDs, effectively generating all possible combinations
of SLDs and TLDs. Thus, for each 8-character segment of the MD5 hash,
four different domains are created, one for each TLD. Given four SLDs
from the MD5 hash, the total number of domains generated per run
of the algorithm is 16 (Bader, 2022). However, since the algorithm
runs twice – once for the date-based seed and potentially once for the
blockchain-based seed – it can produce up to 32 unique domains each
day, as shown in Fig. 1.

This design ensures that new domains are generated daily (based on
the current date) and potentially also from indeterministic blockchain
data, making it harder for security detection’s to predict or preemp-
tively block the malware’s communication endpoints (Bader, 2022).
Moreover, the DGA produces a new set of domains every day with
no delay or waiting time between the generation of each domain,
maintaining the malware’s ability to adapt to changing detection ef-
forts. The use of hexadecimal characters for the SLDs, combined with
the diverse range of TLDs, further enhances the unpredictability and
variability of the domains generated by Orchard v3. The overall domain
format generated by the DGA conforms to a specific structure (Daji and
Suqitian, 2022). The second-level domain (SLD) is an 8-character string
derived from the MD5 hash, containing characters ranging from 0-9
and a-f (hexadecimal format). This SLD is followed by one of the TLDs
mentioned earlier. For example, a domain generated by the algorithm
might look like 1a2b3c4d.com‘‘ ’’ or ‘‘5e6f7g8 h.duckdns.org’’ . The
domain names generated exhibit a sequential property, as they follow
a fixed generation scheme based on deterministic inputs, making them
predictable only to those who understand the algorithm’s seeding logic.
Orchard v3’s DGA uses both deterministic (time-based) and indeter-
ministic ((blockchain-based)) seeds to generate a diverse range of
domains, employing MD5 hashing and a combination of predefined
TLDs. This approach makes the malware more resilient against de-
fencive measures by continually adapting its communication channels,
ensuring that it remains challenging to detect and block consistently
over time.

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Table 1
Overview of malware Using DGA techniques.
 Technique Description Advantages Disadvantages Malware family

(Ref)

 Random Generation Employs a pseudo-random
number generator to create
seemingly unpredictable
domain names.

High domain variability, making
prediction very challenging.

Computationally expensive
and might result in
nonsensical domains.

BumbleBee (Bader,
2023)

 Seed-Based Generation Utilises a seed value (e.g.,
system information,
date/time) as input for a
deterministic algorithm to
generate domains.

Offers a balance between
randomness and predictability for
rendezvous.

Vulnerable if the seed
selection pattern or
algorithm is discovered.

GameoverZeus (Hu
et al., 2023; Bader,
2023; Avertium,
2022), Conficker
(Wang et al., 2023)

 Algorithmic Generation Leverages a specific algorithm
(e.g., cryptographic hash
functions, linguistic rules) to
produce domains based on a
seed or internal state.

Creates a large and potentially
unpredictable domain space.

Relies on the chosen
algorithm, which could be
identified or exploited.

Dridex (Elizarov
and Katkov, 2023)

 Dictionary-Based
Generation

Iterates through a predefined
wordlist or dictionary,
potentially with modifications,
to construct domains.

Large pool of potential domains,
making blacklisting less effective.

Relies on a static wordlist,
potentially leading to
domain exhaustion and
predictability.

Mirai (Affinito
et al., 2023)

 Time-based DGA Utilises the current date, time,
or a combination as seed for
the algorithm. Generates new
domains at predictable
intervals.

Easy to implement, predictable
domain generation for
rendezvous.

Prone to detection if the
seed selection pattern is
identified.

Storm Worm (Rao
et al., 2023),
Orchard v3 (Daji
and Suqitian, 2022)

 Enumeration-based
DGA

Iterates through a predefined
wordlist or dictionary to
generate domains. May use
obfuscation techniques.

Large pool of potential domains,
making blacklisting less effective.

Relies on a static wordlist,
potentially leading to
domain exhaustion.

TrickBot
(Papadogiannaki
and Ioannidis, 2023;
Ding et al., 2023)

 Cryptographic Hash
Function-based DGA

Employs cryptographic hash
functions like MD5 or SHA-1
with a seed (e.g., system
information) to generate
seemingly random domains.

High variability in generated
domains, making prediction
difficult.

Computationally expensive
for resource-constrained
malware.

Locky (Prasetya
et al., 2023)

 Linguistic-based DGA Leverages language rules to
construct domains. May
combine dictionary words
with special characters or
mutations.

Creates seemingly legitimate
domains, potentially evading
basic detection.

Can be computationally
complex and might result
in nonsensical domains.

N/A (Zhao et al.,
2023b; Wang et al.,
2024)

 Multi-level DGA Combines multiple techniques
like time-based and
dictionary-based approaches
for enhanced complexity.

Offers a wider domain space and
makes prediction even harder.

Increases complexity and
potential for malfunction
within the malware.

Reaper
(Sutheekshan et al.,
2024)

 Context-Aware DGA Adapts domain generation
based on infected system
characteristics (e.g., language,
location) for better
camouflage.

Generates domains that appear
more legitimate in specific
contexts.

Increases complexity and
requires additional
information gathering by
the malware.

Spargo (Prasetya
et al., 2023)

 Polymorphic DGA Dynamically modifies the DGA
algorithm itself at runtime to
hinder analysis and
signature-based detection.

Makes the DGA harder to reverse
engineer and detect.

Increases complexity and
potential for bugs that
disrupt domain generation.

Waledac (Javaheri
et al., 2023)

2.1.2. GameoverZeus
The GameoverZeus malware employs a sophisticated Domain Gen-

eration Algorithm (DGA) to produce a series of domain names. This
process begins with a hashing function, which plays a central role in
creating unique and unpredictable domain names (Ashley and Hin-
darto, 2015). Specifically, the malware uses the MD5 hashing algorithm
to convert various pieces of data into a fixed-size string. The hasher
function, which is implemented in the code, takes an input string and
applies MD5 to produce a 128-bit hash. This hash is represented as a
hexadecimal string and serves as the foundation for generating domain
names. To further understand this, imagine that each domain name
is built on a unique hash value. The hasher function ensures that
different inputs yield different hashes, creating a diverse set of possible
domain names. This is critical for malware operations, as it helps avoid
detection and blocking by security systems (Bader, 2024).

The next step in the process involves extracting the current date
using the ((getDate)) function. This function breaks down the date into
day, month, and year. The date is formatted as ((YYYY-MM-DD)), and
then split into its components: day, month, and year. This decompo-
sition ensures that the domains generated are tied to specific dates,
4
adding an additional layer of variability. With the date information at
hand, the malware proceeds to the seeder function, which generates a
seed value essential for the domain name generation process (Ashley
and Hindarto, 2015). This function combines a fixed ‘salt’ value with
an index that changes with each iteration. The salt is a constant value
that remains the same across all iterations, while the index is unique
for each run. The seeder function calculates a remainder when the
combined salt and index are divided by 1000 (Bader, 2022). It also
performs integer division to get a quotient. These calculations are
essential for producing a hash that incorporates both static and dynamic
elements. The seed value, derived from these calculations, is then used
to generate a hash that is composed of several parts, including the
current year and month. This hash is created using the MD5 algorithm,
and its value is crucial for generating domain names (Ashley and
Hindarto, 2015).

The generateDomain function is responsible for converting this hash
into a domain name. It does this by repeatedly dividing the hash value
by 36 and using the remainders to select characters. Characters are
chosen based on whether the remainder is less than 10 (digits) or
10 and above (letters). This process continues until the entire hash

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 1. Lifespan of DGA domains seeded observed in Orchard v3 malware (Bader, 2022).
value has been processed into a string of characters. In addition, to
finalise the domain name, the resulting string is reversed, ensuring that
each domain name is unique and less predictable. The engine function
orchestrates the entire domain generation process. It runs through a
specified number of iterations, each time calling the seeder function to
produce a new hash based on the current index and salt. This hash is
then split into four segments, each of which is used to generate part of
the domain name through the generateDomain function. After generat-
ing the domain name, the function appends a suffix based on the value
of a derived variable. This suffix can be one of several options, such
as ‘‘.com’’, ‘‘.net’’, or ‘‘.biz’’ , depending on the calculations involving
the edx value. Finally, the generated domain names are collected into a
list and saved to a file. The malware can use this list of domains for its
operations, such as connecting to command-and-control servers. The
GameoverZeus malware’s DGA combines hashing, date information,
and modular arithmetic to create a wide array of domain names. This
approach ensures that each domain name is unique, making it difficult
for security systems to predict and block them. By understanding this
process, NIOM-DGA was explicitly built to detect such malware (Bader,
2022).

2.1.3. BumbleBee malware family
The BumbleBee Malware Family is recognised for its distribu-

tion method, which involves an ISO file containing a custom loader
dynamic-link library (DLL). Additionally, it has been identified by
its unique user agent, ‘‘bumblebee’’ (Bader, 2023; Avertium, 2022).
Upon opening the attachment, the malware executes on the victim’s
system, utilising asynchronous procedure call (APC) injection to run the
shellcode received from the command and control (C2) server (Bader,
2023). Bumblebee’s primary objective includes downloading and ex-
ecuting additional payloads like shellcode, Cobalt Strike, Silver, and
Meterpreter (Bader, 2023; Avertium, 2022). In addition, Bumblebee
employs a DGA to generate domain names for communication with the
C2 server (Bader, 2023; Avertium, 2022). In March 2022, Bumblebee
was observed being used by three threat groups in a DocuSign-branded
email campaign, wherein victims were misled into downloading mali-
cious ISO files via email hyperlinks (Bader, 2023). The DGA function
employed by Bumblebee is written in Python code. It calculates the seed
value and generates domain names iteratively based on this seed value.
The DGA function generates domain names comprising 11 characters
randomly selected from a character set, followed by the suffix ‘‘.life’’.
5
BumbleBee DGA Implementation
The DGA employed by BumbleBee generates domain names util-

ising a Linear Congruential Generator LCG. The LCG employs stan-
dard parameters, with a multiplier of 1664525 and an increment of
1013904223. This generator produces random numbers based on a
given seed value, which can be time-dependent or time-independent.
If time-dependent, the seed changes based on the current year, month,
and second, while a fixed magic seed value is utilised otherwise (Bader,
2023). The seed generation function incorporates both time-based and
fixed components. The function calculates the seed value for time-
dependent seeds using the current time’s year, month, and second.
Conversely, a predetermined magic seed value is utilised for fixed
seeds. The random number generator RNG function operates by it-
eratively applying the LCG formula to the seed value. This formula
produces a sequence of pseudo-random numbers subsequently used to
generate the domain names. The domain generation function (DGA)
generates domain names by selecting characters from a predefined
character set and appending the suffix ‘‘.life’’ to them. The DGA it-
eratively applies the RNG function to produce a series of domain
names (Bader, 2023).
Seed Generation Function

The seed function generates the initial seed value the RNG uses. It
takes two parameters: magic, a fixed value used for time-independent
seeds, and time, an optional parameter representing the current time. If
the time parameter is provided, the function calculates the seed value
based on the current second, month (minus 1 to adjust to the range
0–11), and year. Otherwise, it uses default values for these components.
Random Number Generator (RNG) Function

The rand function implements a Linear Congruential Generator
LCG, a type of pseudo-random number generator. It takes an initial
seed value r and iteratively applies a specific formula to produce a
sequence of pseudo-random numbers. The formula involves multiplica-
tion by a constant multiplier 1664525 and the addition of a continuous
increment 1013904223. These constants provide desirable statistical
properties to the generated random numbers.
Domain Generation Function

The dga function utilises the random number generator rand to
generate domain names. It iteratively generates characters for the
domain name using a predefined character set charset . The function
generates a pseudo-random number for each character using the rand
function and selects a character from the charset based on this number.

D. Jeremiah et al. Computers & Security 157 (2025) 104561
It repeats this process for each character in the domain name and
appends the suffix .life to form the complete domain name.
Functionality

The code first generates an initial seed value using the seed func-
tion. The rand function then uses this seed value to produce a sequence
of pseudo-random numbers. The dga function uses these random num-
bers to generate domain names. The final output is a series of domain
names with the suffix .life generated based on the given seed value.
Understanding the methods and algorithms employed by BumbleBee
can aid in research for feature extraction processes aimed at detecting
similar domain names. BumbleBee utilises a deterministic algorithm to
generate domain names based on a seed value, resulting in seemingly
random yet predictable outcomes.

3. Related work

The Domain Name System (DNS) is vital for communication over
the internet, translating user-friendly domain names into IP addresses
[2]. DGAs generate Second-Level Domain (SLD) labels due to limited
top-level domain (TLD). A top-level domain (TLD) with Internation-
alised Domain Names (IDNs) allows international domain registration
from all over the world (Pan et al., 2022). Due to limited TLD us-
age, threat actors leverage a second-level domain name to generate
a Domain generation algorithm (DGA). DGA are the way forward
for cybercriminals, as they dynamically generate domain names to
evade detection and control the malware Command and control server
(C2) (Sidi et al., 2019; Pan et al., 2022; Ren et al., 2023; Kostopoulos
et al., 2023). Malware leveraging DGA techniques can create more than
1 million domains daily, complicating threat detection (Kostopoulos
et al., 2023; Quezada et al., 2022).

These DGA-generated domains, such as ‘‘ tbvbnnkkbvsabc1239.ku’’,
serve as decoys for communication with Command Control servers
(C2) (Pan et al., 2022; Sidi et al., 2019; Kostopoulos et al., 2023). This
type of malware utilises dynamically generated DGA domain names to
communicate with command and control servers and can effectively
evade detection by frequently switching between domains (Bader,
2022, 2024). This dynamic tactic challenges traditional security mea-
sures, hindering threat mitigation (Velasco-Mata et al., 2023; Patil
et al., 2022). In addition, these DGA techniques let bots generate DNS
requests based on a predetermined seeding mechanism known to the
C&C servers. A small set of domain names are registered and expected
to be requested for resolution by the bots (Ren et al., 2023; Ben, 2024).
These domain names correspond to valid IP addresses of command and
control servers, enabling the bots to locate and connect to them. The
bots usually send many requests to the DNS (Domain Name System),
leading to some requests being successfully resolved while others result
in invalid domain names (Corley et al., 2020; Kostopoulos et al., 2023).
When a domain name is invalid, the DNS server responds with an
‘‘NXDOMAIN’’ message, indicating that the domain does not exist.
Despite most requests yielding no responses, a limited number of DGA
domain names are resolved to the C&C IP addresses (Pan et al., 2022;
Kostopoulos et al., 2023; Gogoi and Ahmed, 2023).

The substantial volume of DGA domain name queries and the reg-
ular changes to the seeding mechanism pose a significant challenge to
traditional domain name blocklisting methods like SURBL, Spamhaus
DBL, and Malware Domain Blocklist (Brandstaetter, 2024). These con-
ventional methods rely on blocklists containing domain names linked
to various threats, including spam, phishing, malware distribution,
and botnet command and control servers. In contrast, DGA tactics
involve constant domain name hopping and alterations, making these
traditional methods ineffective in adequately blocking the DGA tech-
nique (Hu et al., 2022).

In the ever-evolving landscape of the last ten years, researchers have
extensively employed Machine Learning (ML) techniques to address
the challenge of DGAs (Quezada et al., 2022; Shahzad et al., 2021).
6
Machine Learning offers several advantages over traditional methods,
such as domain name blocklisting, including SURBL, Spamhaus DBL,
and Malware Domain Blocklist. Firstly, ML techniques can adapt and
evolve. Unlike static blocklists that rely on predefined criteria to iden-
tify malicious domains, ML models can continuously learn from new
data and update their algorithms to detect emerging threats (Highnam
et al., 2021; Kostopoulos et al., 2023). This adaptability is crucial in the
ever-changing landscape of cyber threats, where new malware variants
and evasion techniques constantly emerge (Randhawa et al., 2023).
Secondly, ML-based approaches can analyse large volumes of data and
identify complex patterns that may need to be apparent to human
analysts. In addition, ML models can accurately distinguish between be-
nign and malicious activities by leveraging features extracted from vast
datasets containing benign and malicious domain names, even when
adversaries employ sophisticated evasion tactics (Kostopoulos et al.,
2023; Yan et al., 2023). Moreover, ML algorithms can offer a more
holistic approach to threat detection by considering multiple features
and indicators of malicious behaviour. Cutting-edge research in this
field has been undertaken by Ding et al. (2023), Shahzad et al. (2021),
Velasco-Mata et al. (2023), Bader (2024), Kostopoulos et al. (2023),
wherein researchers have developed a range of machine learning clas-
sifiers proficient in identifying DGA domains. These achievements are
demonstrated through notable discoveries documented in studies like
those by Kostopoulos et al. (2023), Javed et al. (2023), Tuan et al.
(2022), Randhawa et al. (2021).

Nevertheless, the efficiency of this ML DGA detection is paramount.
One key importance in ML DGA detection is feature extraction and
dataset significance (Kostopoulos et al., 2023). Several machine learn-
ing algorithms, such as CNN, Bi-LSTM, Random Forest, LSTM, Decision
Trees, SVM, Naive Bayes, kNN, and Gradient Boosting, were utilised
in a machine learning research project aimed at classifying Domain
Generation Algorithm (DGA) domains (Kostopoulos et al., 2023; Javed
et al., 2023; Pan et al., 2022). The experiment carried out by the
majority of these papers (Pan et al., 2022; Gogoi and Ahmed, 2023;
Quezada et al., 2022; Sreekanta, 2022; Velasco-Mata et al., 2023) high-
lighted several gaps, including a constrained dataset with only a 0.1%
representation of DGA domains, the absence of external experimental
datasets for evaluating proposed models, and limited features with
inadequate feature engineering.

A recent experiment by Kostopoulos et al. (2023) was worthwhile
leveraging 50 features during the features engineering process com-
pared to the limited features utilised by Pan et al. (2022), Gogoi
and Ahmed (2023). Furthermore, Kostopoulos et al. (2023) inves-
tigated the integration of Machine Learning with SHapley Additive
exPlanation (SHAP) for enhancing model interpretability. However,
the model’s effectiveness has limitations in feature extraction and the
use of small sample datasets. In the experiment, Adaptive Boosting
(AdaBoost) achieved the lowest accuracy at 92.32%, while eXtreme
Gradient Boosting (XGBoost) obtained the highest accuracy at 94.81%.
Another study by Bronjon Gogoi and Ahmed, Gogoi and Ahmed (2023)
yielded remarkable findings with an accuracy rate of 99%. Following a
single epoch, the model achieved impressive accuracy. According to the
experiment, early stopping techniques were employed to mitigate the
risk of overfitting the model. However, the feature extraction process in
the Bronjon Gogoi and Ahmed (Gogoi and Ahmed, 2023) experiment is
limited due to the leveraged feature vectorisation method. They have
tokenisation google.co.in into Unicode characters; both (Kostopoulos
et al., 2023; Randhawa et al., 2021; Nowroozi et al., 2022) disagree
that top-level domains (TLD) are not necessary during the feature
extraction process since domain generation algorithms do not generate
the top-level-domains names.

Given the challenges identified in existing state-of-the-art papers
on DGA and the limitations of traditional methods such as block-
listing, the ML approach is needed. Another limitation of ML DGA
detection is the Adversarial techniques, particularly those employing
Generative Adversarial Networks (GANs), have significantly impacted

D. Jeremiah et al. Computers & Security 157 (2025) 104561
the effectiveness of Machine Learning (ML) classifiers in detecting
Domain Generation Algorithm (DGA) domains (Ren et al., 2023; Corley
et al., 2020). GANs are trained on DGA domain datasets and generate
synthetic domains that closely resemble real domain names, posing
a substantial challenge to traditional classifiers (Sidi et al., 2019;
Corley et al., 2020). For example, MaskGAN, utilising characters like
underscores and dashes evasion tactics, successfully evades previous
classifiers by decreasing the detection from 0.977% to 0.495% by
synthesising DGA domains (Sidi et al., 2019). Despite high accuracy in
generating look-alike domains, GAN-generated domains may still be de-
tectable by advanced models focusing on domain string characteristics
with algorithm capabilities, such as the proposed NIOM-DGA model.

3.1. Challenges in feature extraction process

Machine learning algorithms have shown promise in addressing
Malware that takes advantage of DGA-generated domain names by
learning patterns and features indicative of DGA-generated domains
(Kostopoulos et al., 2023; Ding et al., 2023). By training machine learn-
ing classifiers on labelled datasets containing benign and malicious
domain names, researchers can develop models capable of accurately
classifying benign and data-generated domain names (Highnam et al.,
2021; Sivaguru et al., 2020). Features such as domain length, character
distribution, and entropy have proven to be valuable indicators of DGA
activity (Highnam et al., 2021; Moşolea and Oprişa, 2023; Javed et al.,
2023).

However, the effectiveness of machine learning-based DGA detec-
tion methods is lacking in terms of the quality and diversity of the
training data (N. et al., 2022). Malware authors constantly evolve
their techniques to evade detection, requiring ongoing updates and
improvements to detection algorithms. While many studies emphasise
extracting features from Top-Level Domains (TLDs), this process in-
cludes tokenising the dataset using n-grams. The domains and their
TLDs are also vectorised and fed into the machine-learning training
process (Velasco-Mata et al., 2023; Patsakis and Casino, 2021; Wang
and Guo, 2021). Contrary to these findings, Kostopoulos et al. (2023)
explain that this approach proves ineffective in detecting DGA attacks.
They further highlight that machine learning may struggle to identify
DGAs without a proper feature extraction process. Such challenges
require innovative approaches to the feature engineering and selection
process. Pan et al. (2022), Wang and Guo (2021), Patsakis and Casino
(2021) did not explicitly address the feature engineering process.

However, Kostopoulos et al. (2023) significantly improved the fea-
ture engineering process by leveraging 50 different features, resulting
in an impressive 94% accuracy. In their experiments, Kostopoulos
et al. (2023) utilised various features extracted from domain names to
enrich their analysis, including Shannon entropy ,Frequency s, Vowel
Frequency , and domain length. Each feature serves a distinct purpose,
capturing different facets of domain names without extracting TLDs.
For instance, Shannon entropy measures a random variable’s average
‘‘surprisal’’, which is particularly applicable to continuous probability
distributions (Zhao et al., 2023a; Brandstaetter, 2024). Frequency_s
examines character distribution to identify anomalies, while Vowel
Frequency and Length offer insights into the linguistic composition
and domain name size, facilitating classification across different do-
main types. In contrast, the feature set employed by Kostopoulos et al.
(2023) is comparatively narrower in scope than the one we proposed.
Therefore, feature extraction is crucial in detecting DGAs effectively.
Through detailed analysis and experimentation, it becomes evident
that selecting and utilising appropriate features significantly impact the
accuracy and efficacy of the DGA detection ML model. We introduce
a Nature-inspired Optimised ML-based model (NIOM-DGA) to address
these research gaps.

NIOM-DGA leverages the strengths of ML techniques, which offer
adaptability and scalability compared to static blocklisting methods.
NIOM-DGA is built on domain characteristics + algorithm features
7
extraction; NIOM-DGA uses a large dataset that can effectively detect
emerging threats posed by DGAs, which constantly evolve to evade
detection. Building upon the previous ML model, NIOM-DGA also
addresses gaps identified in earlier studies, such as adversarial tech-
niques. NIOM-DGA employs a comprehensive set of diverse features
and leverages nature-inspired optimisation for hyperparameter tuning
to detect DGA-generated and benign domains effectively.

4. ExtraHop networks dataset description

Using a large dataset is crucial for training a model when detecting
DGAs because of the sheer volume and diversity of domain names
that can be generated by DGA malware. DGAs are designed to create
many unique domain names, often hundreds of thousands or mil-
lions (Kemmerling, 2023; Patil et al., 2022). Malware frequently uses
these domains to establish communication channels with command
and control servers or to distribute malicious payloads. By training a
model on a large dataset, the model can recognise the patterns and
characteristics common to DGA-generated domain names. This method
includes features such as the domain length, the presence of certain
characters or character sequences, and statistical properties of the
domain names. Using a large dataset ensures that the model is exposed
to various DGA-generated domain names, making it more robust and
capable of generalising to new, unseen examples (Sharma, 2023).

Consequently, in this research, we employed a recent and one of the
most comprehensive dataset called the Extrahop Network dataset (Ex-
trahop Network, 2024), which contains over 16 million balanced, be-
nign and dga domains. Moreover, we employ another ten (10) datasets
to evaluate and consolidate the performance of our model on external
data sources. Table 2 summarises the training and testing description of
the dataset. Our primary dataset originates from ExtraHop Networks,
which was used to train NIOM-DGA. The ExtraHop Networks DGA
detection dataset is publicly accessible on their GitHub repository.
It is the cornerstone for our research or the only dataset used to
train/test the model with an 80/20 split. Extrahop Network (2024). The
ExtraHop Networks dataset is encapsulated within a single file, dga-
training-data-encoded-v3.json.gs, containing an extensive
collection of domain entries. Encoded in JSON format, each entry
comprises of two fundamental components: the domain name and
its corresponding threat classification. The classification distinguishes
between benign domains and those generated by DGAs, providing
invaluable insight into the prevalence of malicious activities.

This dataset is thoroughly curated, encompassing over 16 mil-
lion domain entries. Furthermore, the distribution between benign
and DGA-generated domains is approximately balanced, facilitating
robust model training and evaluation. In preparation for analysis, we
conducted comprehensive data cleaning procedures. Specifically, we
removed extraneous metadata, such as the ‘‘threat’’ label, and trans-
formed the dataset into a more accessible CSV format. Consequently,
the cleaned CSV file presented a concise and structured dataset repre-
sentation. Each entry in the dataset consists of a domain name paired
with its corresponding label. We then transform each domain into bi-
nary feature representations that capture its algorithmic characteristics.
These features are subsequently used to train and test the NIOM-DGA
model.

4.1. External validation: NIOM-DGA training and testing datasets

While significant research efforts have been devoted to detecting
DGAs (Highnam et al., 2021; Sivaguru et al., 2020; Suryotrisongko
and Musashi, 2022; Tuan et al., 2022; Javed et al., 2023), there
remains a need for further external validation experiments to assess the
effectiveness of developed models. We recognise that external model
validation is often overlooked despite its crucial role in ensuring the
model’s efficiency.

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Table 2
Overview of all datasets used in conjunction with NIOM-DGA.
 No. Dataset (Ref) Purpose Samples Description
 1. Extrahop Network Dataset (Extrahop Network, 2024) Training/Testing 16,246,014 Contains 16 m balanced DGA and benign dataset.
 2. Aayush V Dataset (Shah, 2025) Testing 16,773,525 Balance DGA and benign domain names.
 3. baderj Dataset (Bader, 2024) Testing 265,538 Collection of DGAs generated domain names.
 4. DGArchive Dataset (DGArchive, 2025) Testing 5632,234 Archive of DGAs generated domain names.
 5. harpomaxx Dataset (Harpo, 2023) Testing 8342,022 Comprises both DGA and benign domain names.
 6. Abakumov Dataset (Abakumov, 2024) Testing 825,991 Contained Benign and DGA generated domains names.
 7. Charles Dataset (Givre) Testing 160,003 Dataset of DGA and benign domain names.
 8. siyad Dataset (Mestour, 2021) Testing 1404,792 Comprises both DGA and benign domain names.
 9. OmurcanTATAR Dataset (Tatar, 2024) Testing 1029,822 Contained Benign and DGA generated domains names.
 10. Sabin Dataset (Sharma Paudel) Testing 1542,771 Umbrella benign domains and DGA domains names.
 11. Rafael Dataset (Gregório, 2023) Testing 2017,746 Majestic legit benign and DGA domains and names.

Recognising this gap, we employed a comprehensive evaluation
methodology by leveraging publicly available DGA datasets to evaluate
the NIOM-DGA model thoroughly (Table 2). Understanding that the
performance of machine learning classifiers is intrinsically tied to the
quality and diversity of the training data (El-Ghamry et al., 2023,?;
Mehta et al., 2023), we took a proactive approach by integrating
character-based and algorithm-based detection techniques into NIOM-
DGA. This combination enables NIOM-DGA to draw upon the strengths
of each feature extraction process, thereby empowering it to make
informed decisions in domain threat detection scenarios. It is important
to note that the results of this extensive detection and evaluation en-
deavour will be thoroughly discussed in the experiment results Section,
providing valuable insights into the efficacy and performance of the
NIOM-DGA framework in real-world settings.

5. Nature-inspired optimised ML-based model (NIOM-DGA)

5.1. Research methodology

The study utilises two primary datasets as shown in Fig. 2: the
Extrahop Network dataset and an External dataset. The Extrahop Net-
work dataset provides real-world network traffic data, serving as a
reliable basis for analysing the behaviour of Domain Generation Al-
gorithms (DGAs). The External dataset is employed to validate the
generalisability of the proposed model, ensuring its applicability across
diverse scenarios. Both datasets undergo thorough preprocessing to
prepare them for analysis. This involves cleaning the data to remove
noise, normalising feature values for consistency, and addressing miss-
ing or incomplete entries. These preprocessing steps ensure that the
datasets are optimised for the subsequent stages of feature extraction
and analysis.

Feature extraction is carried out to derive meaningful attributes
that effectively represent the behaviour of DGAs. This process focuses
on identifying key patterns within the data, including character fre-
quency distributions, Shannon entropy analysis, Jaro entropy values,
and Vowel-Consonant ratio. These features are carefully designed to
highlight the distinctive characteristics of malicious domains. To pri-
oritise the most significant features, SHAP values (SHapley additive
explanations) are employed as a robust interpretability technique as
shown in Fig. 5. This approach quantifies the contribution of each
feature, ensuring that only the most influential attributes are retained
for training the machine learning models.

The machine learning models are trained using the Extrahop dataset,
with the data divided into training and testing subsets to facilitate
evaluation on unseen samples. During the training phase, experiments
are conducted with various classifiers and their performance is assessed
using key evaluation metrics. To further enhance the performance
of the models, the hyperparameters are fine-tuned through nature-
inspired optimisation techniques. This optimisation ensures that the
models achieve peak performance on the training dataset, reducing the
risk of overfitting while maximising predictive accuracy. The model,
referred to as NIOM-DGA, is rigorously tested on both the Extrahop
8
and External datasets. Its performance is evaluated using metrics such
as accuracy, precision, recall, and F1 score, providing a comprehensive
assessment of its effectiveness. The results are compared with the base-
line methods to contextualise the advances achieved by the proposed
approach.

An overview of the NIOM-DGA model is presented in Fig. 3. The
proposed model integrates domain-specific features and employs ad-
vanced algorithms for character-based feature extraction compared to
the previous DGA ML. The NIOM-DGA technique uses advanced feature
extraction techniques to extract 78 distinct features from domain names
to significantly enhance the discriminatory capabilities of classifiers,
enabling more precise and reliable detection of Domain Generation
Algorithm (DGA) attacks. In addition, we researched how these DGA
are created, as discussed in the background Section, and we leveraged
the same technique for feature extraction. Many previous works related
to ML DGA detection in the literature are constrained by small or
synthetic datasets, which limits their findings’ generalisability and real-
world applicability (Pan et al., 2022; Kostopoulos et al., 2023; Gogoi
and Ahmed, 2023; Quezada et al., 2022).

The proposed NIOM-DGA research fills this gap by conducting com-
prehensive evaluations on large-scale, diverse datasets representative
of real-world network traffic. The NIOM-DGA contains a sophisticated
character-algorithm features extraction process. This extraction is an
extensive set of 78 distinct features, as shown in Fig. 3 . These features
form the basis for our machine learning (ML) models, which include
Random Forest (RF), XGBoost (XGB), Decision Tree (DT), AdaBoost-
Classifier, ExtraTreesClassifier, Multi-layer Perceptron (MLP), and Lo-
gistic Regression. To enhance the performance of the NIOM-DGA,
we go a step further by optimising its parameters. We achieve this
by leveraging nature-inspired algorithms such as the Bat Algorithm,
Grey Wolf Optimise, and Firefly Algorithm (El-Ghamry et al., 2023,?;
Mehta et al., 2023). These optimisation techniques fine-tune the best-
performing ML algorithm’s hyperparameters, thereby increasing our
model’s accuracy (Pye et al., 2020).

We rigorously test the NIOM-DGA to thoroughly evaluate its effec-
tiveness. We employ 10 external datasets representing unique scenarios
to assess how well our model detects unknown DGA-generated and
benign domain names. This thorough evaluation process allows us
to measure the NIOM-DGA’s robustness and versatility across various
real-world scenarios.

5.2. Data preprocessing and features extraction

Our data preprocessing ensured consistency and readiness for anal-
ysis. The dataset was already in a clean and structured JSON for-
mat, containing domain names and their classification labels (e.g.,
{‘‘domain’’: ‘‘wgegrlteegwrrrerwi’’, ‘‘threat’’:
‘‘dga’’}). We converted it to CSV for compatibility with our ex-
traction tools, verified there were no duplicate entries, and focused on
the key fields for feature extraction. We then applied additional feature
extraction processes, as detailed in Table 3 including Domain_Length,
Substring_Count,Special_Character_Presence, a-s_Frequency_with_Num-

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 2. Research design methodology.
bers and Substring_Count, preparing the data for effective machine
learning training and testing. Additionally, applying advanced fea-
ture engineering techniques facilitated the extraction of pertinent fea-
tures, enhancing the dataset’s utility for comprehensive analysis and
modelling.

Table 3 presents an overview of features which are extracted from
domain names in this study. While most of the feature type names
shown in Table 3 are self-explanatory, in this section, we explain Shan-
non_Entropy, Jaro_Similarities, Cosine_Similarity , Needleman_Wun-
sch_Feature, and Smith_Waterman_Feature.
9
Shannon_Entropy: Shannon Entropy serves as a metric to mea-
sure the randomness or unpredictability of a domain name. Originally
proposed by Claude Shannon in information theory, this measure quan-
tifies the uncertainty or disorder within a given data set (Kostopoulos
et al., 2023). In the context of domain names, Shannon Entropy helps
discern patterns or irregularities that may indicate suspicious or algo-
rithmically generated domains. Higher entropy values suggest greater
complexity and randomness, potentially signalling the presence of a
DGA (Hsu et al., 2021). The Shannon Entropy 𝐻(𝑋) of a discrete
random variable 𝑋 with probability mass function 𝑃 (𝑋) is calculated

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 3. Block Diagram of NIOM-DGA.
Table 3
Feature name(s), Sequence number, and Descriptions.
 Feature name(s) Sequence number Description
 Domain_Length 1 Length of the domain name
 Shannon_Entropy 2 Measure of randomness or unpredictability of a domain name
 Jaro_Similarities 3 Measure of similarity between two strings
 Cosine_Similarity 4 Measure of cosine angle between two vectors
 Needleman_Wunsch_Feature 5 Algorithm for global sequence alignment
 Smith_Waterman_Feature 6 Algorithm for local sequence alignment
 Character_Set_Diversity 7 Number of unique characters in the domain
 Levenshtein_Distance 8 Minimum number of single-character edits
 Query_Sequence_Entropy 9 Measure of uncertainty or randomness of a query sequence
 Vowel_Cluster_Count 10 Count of consecutive vowel sequences
 A_s_with_Numbers_Character 11–36 Presence of specific characters (A-s) with numbers
 Consonant_Cluster_Count 37 Count of consecutive consonant sequences
 D_Character_Count 38 Count of the letter ’D’
 Dash_Presence 39 Presence of a dash character
 Date_Time_Character_Presence 40 Presence of date and time characters
 Double_Character_Presence 41 Presence of repeated characters
 Consecutive_Sequence_Length 42 Length of the longest consecutive character sequence
 Lowercase_Letter_Count 43 Count of lowercase letters
 Mean_Substring_Length 44 Mean length of all substrings
 Numeral_Presence 45 Presence of numeral characters
 Special_Character_Presence 46 Presence of special characters
 Substring_Count 47 Count of all substrings
 Unconventional_Structure_Presence 48 Presence of unconventional domain structures
 Unique_Character_Count 49 Count of unique characters
 Unique_Character_Ratio 50 Ratio of unique characters to total characters
 Unique_Substring_Count 51 Count of unique substrings
 Vowel_Consonant_Ratio 52 Ratio of vowels to consonants
 a-s_Frequency_with_Numbers 53–78 Frequency of lowercase letters (a-s)
10

D. Jeremiah et al. Computers & Security 157 (2025) 104561
as:
𝐻(𝑋) = −

∑

𝑖
𝑃 (𝑋 = 𝑥𝑖) log2(𝑃 (𝑋 = 𝑥𝑖)) (1)

Where 𝑥𝑖 represents each possible outcome of the random variable
𝑋.

Jaro_Similarities:
Jaro Similarity is a metric used to determine the similarity between

two strings, primarily focusing on character matches and transposi-
tions (Basak et al., 2023). It calculates the proportion of matching
characters between two strings, such as benign and dga domains,
considering the number of matching characters and their positions.
By quantifying the degree of resemblance between domain names,
Jaro Similarity aids in distinguishing legitimate domains from those
generated by DGA. The Jaro similarity coefficient 𝐉 between two strings
𝑠1 and 𝑠2 of lengths 𝑙𝑒𝑛_𝑠1 and 𝑙𝑒𝑛_𝑠2 respectively is defined as:

𝐽 = 1
3

(

𝐦
𝑙𝑒𝑛_𝑠1 + 𝐦

𝑙𝑒𝑛_𝑠2 + 𝐦 − 𝑡
𝐦

)

(2)

Here, 𝐦 represents the count of matching characters, while 𝑡 denotes
the number of transpositions—instances where matching characters are
not in the correct sequence (Sahni and Rajasekaran, 2023).

Jaro Similarity provides a numerical indication of how closely two
strings resemble each other, with 𝐽 = 1 indicating identical strings and
𝐽 = 0 implying no character matches.

Cosine_Similarity: Cosine Similarity measures the cosine of the an-
gle between two vectors in a multi-dimensional space, commonly used
in natural language processing and text mining tasks (Kirişci, 2023;
Hasan and Ferdous, 2024). We leverage cosine Similarity to assess
the similarity between domain name feature vectors extracted from
datasets. By evaluating the geometric relationship between feature vec-
tors, Cosine Similarity helps identify clusters or patterns indicative of
DGA-generated domains. Higher cosine similarity values imply greater
resemblance between domain features, assisting in classifying malicious
and benign domains (Kirişci, 2023; Hasan and Ferdous, 2024). The
Cosine Similarity cosine_similarity between two feature vectors 𝐀 and
𝐁 is calculated as:
cosine_similarity = 𝐀 ⋅ 𝐁

‖𝐀‖‖𝐁‖
(3)

Where 𝐀 ⋅𝐁 represents the dot product of the two vectors, and ‖𝐀‖
and ‖𝐁‖ are the magnitudes of the vectors.

Needleman_Wunsch_Feature: The Needleman–Wunsch feature
leverages this algorithm to align pairs of domain names, identifying
conserved regions and gaps between characters between two strings
(Hu et al., 2024; Likić, 2007). In this case its between benign domains
and dga domains. By aligning sequences and assigning similarity scores
based on matches, mismatches, and gaps, the Needleman–Wunsch
feature aids in quantifying the degree of resemblance or divergence
between these domain names. This facilitates the detection of subtle
variations and patterns characteristic of DGA-generated domains. The
Needleman–Wunsch alignment score NW(𝑠1, 𝑠2) between two strings 𝑠1
and 𝑠2 is calculated using dynamic programming as:
NW(𝑠1, 𝑠2) = max

𝑖,𝑗
{𝑀𝑖,𝑗} (4)

Where 𝑀𝑖,𝑗 represents the score of the best alignment ending at
position 𝑖 in string 𝑠1 and position 𝑗 in string 𝑠2.

Smith_Waterman_Feature: Similar to the Needleman–Wunsch al-
gorithm, the Smith–Waterman algorithm is also employed for sequence
alignment but focuses on local sequence similarity rather than global
alignment (Chagneau et al., 2024; Mehri et al., 2023). The Smith–
Waterman feature evaluates pairs of benign and dga domain names
to identify regions of maximal similarity within a regional context. By
pinpointing areas of significant overlap or divergence between domain
sequences, the Smith–Waterman feature enhances the granularity of
similarity assessment, offering insights into specific motifs or patterns
associated with DGA-generated domains. The Smith–Waterman align-
ment score SW(𝑠1, 𝑠2) between two strings 𝑠1 and 𝑠2 is calculated
11
similarly to Needleman–Wunsch, but allowing negative scores and
selecting the maximum local score instead of the global score.
SW(𝑠1, 𝑠2) = max

𝑖,𝑗
{𝑀𝑖,𝑗} (5)

Where 𝑀𝑖,𝑗 represents the score of the best alignment ending at
position 𝑖 in string 𝑠1 and position 𝑗 in string 𝑠2.

As depicted in Fig. 4, showcasing SHAP feature importance grouped
into eight categories, we evaluated the model to ensure the significance
of all features contributing to the results. Initially, our feature set
comprised over 100 variables. However, as detailed in Section 5.2,
certain features proved impractical and were consequently eliminated
to enhance model efficiency using SHAP as shown in Fig. 5. While
these removals optimised the model, we attempted to remove the
’special_character_presence’ feature due to its limited use, as indi-
cated by SHAP analysis. Unfortunately, this adjustment resulted in a
marginal decrease in model accuracy by 0.4%.

5.3. NIOM-DGA features importance

Feature importance is crucial during the ML training phase; these
features encapsulate the essential characteristics of the data and play
a pivotal role in determining the performance and effectiveness of
ML models. Properly engineered features enable algorithms to identify
patterns, make accurate predictions, and derive meaningful insights
from complex datasets. In addition, the quality and relevance of ML
features directly impact the success and efficacy of machine learning
applications across various domains, making them a critical component
of the ML workflow.

Subsequently, Effective feature selection and engineering are piv-
otal as they directly impact the model’s ability to learn meaning-
ful patterns and make accurate predictions. During our research, we
identified over 100 features. However, upon assessing feature im-
portance, we found that some features could have contributed more
effectively to the machine learning process, so we removed them. These
included Non-ASCII_Character_Presence, Misspelled_Words_Presence,
IDN_Homograph_Presence, and Cyrillic_or_Chinese_Presence.

To understand feature importance, we utilised XGBoost alongside
SHAP (SHapley Additive exPlanations), a method in ML that explains
individual predictions by assigning values to features (Kostopoulos
et al., 2023). SHAP quantitatively assesses the contribution of each
feature to model predictions using the formula:

𝝓𝑖(𝑓) =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)] (6)

The Shapley value 𝝓𝑖(𝑓) for feature 𝑖 in function 𝑓 . It considers all
possible subsets 𝑆 of features excluding 𝑖, calculates the difference in
model output when adding feature 𝑖 to subset 𝑆, and averages these
differences over all subsets. This provides a fair assessment of each
feature’s contribution to the model’s predictions.

In Fig. 5, we present an analysis of features derived from SHAP
(SHapley Additive exPlanations) values, which quantitatively assess the
contribution of each feature to the model’s predictions. In Fig. 5(a)
to (f), we examine the interconnected narratives of various feature
pairs shaping model predictions. In these plots, features that dom-
inantly influence name classifications are depicted along with their
values. Red denotes features related to DGA domain names, and blue
colours contribute to benign domain names. Consequently, the inter-
action between Character_Set_Diversity and Cosine_Similarity reveals
modest variations in Character_Set_Diversity , while Cosine_Similarity
exhibits a more pronounced influence. Another feature we analyse is
Shannon_Entropy’s diverse impact, which contrasts with Cosine_Simi-
larity’s less pronounced influence, shaping the model’s understanding
of the data. In addition, we analyse the Levenshtein_Distance, while
the feature impacts predictions moderately, while Shannon_Entropy’s
broader impact contributes to the model’s prediction. Furthermore,
Cosine_Similarity and Mean_Substring_Length interact moderately,

D. Jeremiah et al.

Fig. 4. SHAP feature importance grouped into eight categories.

Computers & Security 157 (2025) 104561

12

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 5. Empirical analysis of SHAP values for feature pair interactions: red indicates DGA traffic; blue indicates benign traffic. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
showcasing a more comprehensive influence range alongside the Co-
sine_Similarity . Consequently, we also look at the Domain_Length
and Numeral_Presence, which complement the model’s effectiveness.
Lastly, we analyse that Vowel_Consonant_Ratio significantly influ-
ences predictions, while Cosine_Similarity’s effect is less pronounced.
The SHAP scatter plots unveil better feature effectiveness interactions
shaping model predictions.

5.4. Learning and experimental phase

NIOM-DGA employs a variety of machine learning algorithms, in-
cluding Random Forest (RF), Logistic Regression (LR), Decision Trees
(DT), XGBoost (XGB), AdaBoost (AB), Extremely Randomised Trees
(ERT), and Multilayer Perceptron (MLP) for model training using the
ExtraHop Dataset with 80/20 train test splits. Following classification,
the top-performing model is selected and subjected to further refine-
ment using nature-inspired optimisation algorithms. These algorithms
13
include the bat algorithm (BA), grey wolf optimiser (GWO) and fire-
fly algorithm (FA). The aim is to enhance classification accuracy by
fine-tuning the selected model.

We evaluate the classification results of ML algorithms based on
the outcomes of the confusion matrix. Confusion matrix summaries the
results of machine learning classifiers based on correct and incorrect
predictions by using the following metrics:

• True Positive (TP): The number of DGA domains correctly clas-
sified as DGA.

• True Negative (TN): The number of benign domains correctly
classified as benign.

• False Positive (FP): The number of benign domains incorrectly
classified as DGA.

• False Negative (FN): The number of DGA domains incorrectly
classified as benign.

The performance metrics we consider include accuracy (Eq. (7)),
recall (Eq. (8)), precision (Eq. (9)), and F1-score (Eq. (10)), which are

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 6. ROC Curves of Classifiers Trained with ExtraHop Networks Dataset.

Table 4
Performance comparison of ML classifiers.
 Classifier Accuracy Recall Precision F-measure
 RF 96 95 96 96
 XGB 95 94 95 94
 DT 93 93 93 93
 AdaBoost 91 90 90 90
 ExtraTrees 96 95 96 95
 MLP 94 94 94 94
 LR 90 87 92 90
 GB 92 90 93 91

derived from the confusion matrix.
Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(7)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

𝐹1 = 2 × Precision × Recall
Precision + Recall (10)

Table 4 presents the classification results of NIOM-DGA by employ-
ing the ExtraHop Network dataset. As shown in Table 4, RF outperforms
all the other classifiers (ExtraTrees, XGB, DT, Adaboost, MLP, LR and
GB) in terms of classification results. Similarly, Fig. 6 illustrates the
receiver operating characteristic (ROC) curves obtained from classifiers
trained on the Extrahop Network dataset.

As shown in Fig. 6, the ROC curves depict the false positive rate
(FPR) on the 𝑥-axis and the true positive rate (Recall) on the 𝑦-
axis. These curves reveal significant outcomes, with Random Forest as
compared to ExtraTrees, XGB, DT, Adaboost, MLP, LR and GB. Sub-
sequently, to further increase the efficacy of NIOM-DGA, we integrate
NIAs to determine the optimal hyper-parameter settings for the most
effective classifier (RF) (Rafiq et al., 2022). Our considerations contain
the Bat algorithm (BA), Firefly algorithm (FA), and Grey Wolf optimiser
(GWO) for tuning the hyper-parameters of RF.

5.5. Random forest hyper-parameters proposed by NIAs

We employ NIAs for hyper-parameter optimisation, leveraging their
ability to navigate complex optimisation spaces effectively (Rafiq et al.,
14
Table 5
Hyper-parameters for RF proposed by NIAs.
 Hyper-parameter BA FA GWO
 n_estimators 60 80 80
 max_depth 34 28 28
 min_sample_split 2 2 2
 max_features auto sqrt auto

2022). Unlike traditional methods, NIAs draw inspiration from natural
phenomena, mimicking processes like evolution and swarm behaviour
to tackle challenging optimisation problems (Mehta et al., 2023; El-
Ghamry et al., 2023). They have a proven track record of success in
various applications, particularly in optimising the hyperparameters
of complex machine-learning models (Mehta et al., 2023; Pye et al.,
2020). By mimicking natural processes, NIAs offer a unique approach
to exploring and exploiting the search space, often leading to superior
solutions. They exhibit robustness, scalability, and versatility, making
them suitable for optimising diverse machine-learning algorithms. NIAs
handle high-dimensional parameter spaces and non-linear relationships
efficiently, empowering effective fine-tuning of models to enhance
performance and generalisation ability.

During the training phase, we evaluated multiple machine learning
algorithms, including Random Forest (RF), XGBoost (XGB), Decision
Trees (DT), AdaBoostClassifier, Extra Trees Classifier, MLP Classifier,
Logistic Regression, and Gradient Boosting Classifier. Each algorithm
underwent rigorous scrutiny, focusing on pivotal performance metrics
such as accuracy, recall, precision, and F-measure. Among these al-
gorithms, Random Forest (RF) outperformed all the other classifiers,
showcasing remarkable accuracy at 96%. In order to achieve even
better results, we employ NIAs to tune the hyper-parameters of RF
classifiers for DGA detection.

Table 5 present the optimal hyper-parameters setting for RF de-
termined by NIAs for classifying DGA-generated and benign domain
names. Subsequently, Table 6 presents the classification results achieved
by NIOM-DGA, a DGA-generated and benign domains classifier based
on RF and optimised using NIAs. Compared to the RF classifier re-
sults in Table 4 and Fig. 7, NIOM-DGA remarkably strengthens the
performance by employing NIAs to determine the optimal setting of
hyper-parameters (upto 98% accuracy in case of BA) (see Tables 7–11).

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 7. Combined Classifier Performance after NIA Optimisation (Accuracy, Recall, Precision, F-measure).
Table 6
Performance of Random Forest after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%)
 Bat Algorithm 98 99 98 98
 Grey Wolf Optimiser 97 98 97 97
 Firefly Algorithm 92 93 92 92

Table 7
Performance of XGBoost after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%)
 Bat Algorithm 95 94 96 95
 Grey Wolf Optimiser 95 93 94 93
 Firefly Algorithm 92 92 92 93

Table 8
Performance of Decision Tree after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%)
 Bat Algorithm 95 96 96 95
 Grey Wolf Optimiser 94 90 90 89
 Firefly Algorithm 92 92 94 93

Table 9
Performance of AdaBoost after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%)
 Bat Algorithm 93 92 93 92
 Grey Wolf Optimiser 93 92 92 91
 Firefly Algorithm 95 94 95 94

Table 10
Performance of Logistic Regression after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%)
 Bat Algorithm 93 93 92 93
 Grey Wolf Optimiser 93 92 93 91
 Firefly Algorithm 93 93 92 93

Many model classifiers performed better with nature-inspired opti-
misation (NIA) techniques, which can be attributed to a combination
of hyperparameter settings and the inherent characteristics of each
optimisation algorithm.
15
Table 11
Performance of Gradient Boosting after NIA optimisation.
 Classifier Accuracy (%) Recall (%) Precision (%) F-measure (%)
 Bat Algorithm 93 94 93 92
 Grey Wolf Optimiser 93 92 92 91
 Firefly Algorithm 93 94 95 94

From the data in the tables, it is evident that the BA consistently
outperforms the other nature-inspired optimisation techniques, such as
the GWO and the FA, across various classifiers. This superior perfor-
mance can be attributed to the specific hyperparameter settings chosen
for each model, which are tailored for the optimal functioning of BA.
For instance, BA used a higher number of n_estimators (60 for BA,
compared to 80 for GWO and FA), which may contribute to more
robust learning through increased model complexity and diversity.
Additionally, BA’s use of max_depth values that are slightly higher
(34 for BA) might help capture more complex patterns in the data,
leading to better generalisation and higher performance metrics such
as accuracy, recall, and precision.

In contrast, the GWO shows strong performance, particularly in
Random Forest and XGBoost classifiers, where it performs second to
BA. The max_depth of 28, a lower value than BA, suggests that GWO
might be better suited for simpler models, avoiding overfitting while
still achieving high performance. GWO’s lower number of n_estimators
compared to BA may be compensated by its efficiency in optimising
hyperparameters, achieving solid performance with fewer estimators.

The FA, despite its more conservative hyperparameter settings (with
n_estimators at 80 for both FA and GWO), consistently trails behind the
other two in terms of overall performance. This suggests that FA may
require further tuning of its parameters or may not be as effective in
capturing complex patterns in the dataset compared to BA and GWO.

Thus, the differences in performance are influenced by the interplay
between the hyperparameters and the optimisation strengths of each
algorithm. The Bat Algorithm, with its ability to explore the hyperpa-
rameter space more effectively, results in more optimal configurations,
leading to better classification performance. The GWO, with a balanced
approach to hyperparameter selection, also performs well but not to
the same extent as BA. The FA, while effective in certain contexts,
may need further refinement to compete with BA and GWO in terms
of classifier performance.

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Table 12
NIOM-DGA: Performance on external datasets.
 No. Dataset (Ref) Samples Accuracy Precision Recall F-measure
 1. Aayush V Dataset (Shah, 2025) 16,773,525 0.890 0.893 0.880 0.718
 2. baderj Dataset (Bader, 2024) 265,538 0.968 0.980 0.968 0.959
 3. DGArchive Dataset (DGArchive, 2025) 5632,234 0.991 0.991 0.991 0.991
 4. harpomaxx Dataset (Harpo, 2023) 8342,022 0.981 0.911 0.971 0.981
 5. Abakumov Dataset (Abakumov, 2024) 825,991 0.971 0.991 0.961 0.991
 6. Charles Dataset (Givre) 160,003 0.991 0.981 0.991 0.961
 7. siyad Dataset (Mestour, 2021) 1404,792 0.896 0.893 0.878 0.885
 8. OmurcanTATAR Dataset (Tatar, 2024) 1029,822 0.931 0.915 0.925 0.920
 9. Sabin Dataset (Sharma Paudel) 1542,771 0.965 0.961 0.895 0.893
 10. Rafael Dataset (Gregório, 2023) 2017,746 0.906 0.895 0.905 0.900
Table 13
Comparison with existing works with NIOM-DGA.
 Proposed model Year External experiment ML algorithms Features number Testing amount Accuracy
 DGA-RF (Hoang and Vu, 2021) 2021 X Random Forest 42 1500,000 90%
 AGD - FANCI (Wang and Guo, 2021) 2021 X LSTM 21 1500,000 78%
 AGD - LSTM (Wang and Guo, 2021) 2021 X Bi-LSTM 21 300,000 86%
 AGD - Bi-LSTM (Wang and Guo, 2021) 2021 X CNN 21 190,000 88%
 AGD - CNN (Wang and Guo, 2021) 2021 X CNN-LSTM 21 180,000 89%
 AGD-CNN-LSTM (Wang and Guo, 2021) 2021 X LSTM-Att 21 210,000 89%
 Bi-LSTM (Pan et al., 2022) 2022 ✓ LSTM 12 220,000 97%
 HAGDetector (Liang et al., 2022) 2022 ✓ LR 21 300,000 95%
 CANINE -C (Gogoi and Ahmed, 2023) 2023 X CANINE 21 90,000 99%
 BiGRU-ATT (Yan et al., 2023) 2023 ✓ BiGRU 20 1000,000 96%
 MLP- DGA (Abhiram et al., 2023) 2023 X MLP 7 700,000 97.24%
 DGA-SVM (Moşolea and Oprişa, 2023) 2023 ✓ SVM 30 600,000 96%
 SESAME (Weissgerber et al., 2023) 2023 ✓ SESAME 28 900,000 83.89%
 DGA-T-C (Ding et al., 2023) 2023 ✓ CNN 18 1000,000 96%
 XAI x SHAP (Kostopoulos et al., 2023) 2023 X XGBoost 50 900,000 94.81%
 Bi-LSTM (Hassaoui et al., 2024) 2024 X LSTM 21 1000,000 95%
 HDDN (Chen et al., 2024) 2025 X CNN + LSTM 39-char + 75 seq 674,898 93.86%
 HDDN (Chen et al., 2024) 2025 X CNN + LSTM 39-char + 75 seq 1000,000 90.09%
 NIOM-DGA 2025 ✓ Random Forest 78 3200,000 98.3%
After optimising the model with NIAs, we selected the best NIAs
classifiers. We conducted further evaluations employing 10 external
datasets (Table 2) for further testing. We considered the
hyper-parameters setting determined by BA as it demonstrated superior
performance compared to FA and GWO hyper-parameters settings when
evaluated using the base dataset (Table 6). The combined samples
in the external datasets for testing cover over thirty-seven million
(37,883,844 approx.) benign and DGA-generated domain names, show-
casing the comprehensive scope of the external evaluation conducted
with NIOM-DGA. Table 12 presents the performance of NIOM-DGA
on external datasets. As shown in Table 12, NIOM-DGA performs
remarkably well when tested on the external datasets with an average
accuracy of 95.7%.

Alongside classification outcomes, we evaluate the time complexity
of NIAs as a performance metric for NIOM-DGA. Fig. 8 illustrates
the time each NIA (BA, FA, and GWO) takes to optimise the hyper-
parameters of RF across ten distinct external datasets. Each NIA began
with a population size of 50, with a maximum of 100 iterations.
BA demonstrates superior performance over FA and GWO in terms
of time complexity and classification outcomes. FA and GWO also
deliver commendable classification results; however, they require sig-
nificantly more time than BA to identify optimal hyper-parameters
across each dataset. Consequently, NIOM-DGA favours BA over FA and
GWO for hyper-parameter optimisation to enhance RF performance in
DGA classification.

6. Comparative analysis with other approaches

Table 13 compares NIOM-DGA with existing techniques proposed in
the literature. As shown in the Table 13, only few of the related works
(Bi-LSTM (Hassaoui et al., 2024; Pan et al., 2022), BiGRU-ATT (Yan
et al., 2023), SVM (Moşolea and Oprişa, 2023), SESAME (Weissger-
ber et al., 2023), and T-C (Ding et al., 2023)) conducted external
16
experiments to evaluate their models. In contrast, although NIOM-DGA
achieved up to 98% classification accuracy by using the base dataset
(ExtraHop Network dataset), it also considered ten external datasets for
validation. It achieved up to 95.7% classification accuracy on average.
The number and quality of features directly impact a model’s ability to
capture intricate patterns within the data. As shown in Table 13, NIOM-
DGA employs up to 78 distinct features extracted from domain names,
significantly more than those listed in the comparison table. However,
models with higher feature numbers often possess a greater capacity
for distinguishing complex relationships at the risk of over-fitting.
Conversely, models with fewer features might exhibit improved gen-
eralisation but overlook crucial variations in the dataset. NIOM-DGA
addresses these issues by thoroughly selecting the essential features for
the model, with 78 distinct features. Finally, in terms of accuracy, apart
from CANINE-C (Gogoi and Ahmed, 2023), NIOM-DGA significantly
outperforms all the reported techniques in Table 13. Although CANINE-
C (Gogoi and Ahmed, 2023) reports up to 99% classification accuracy,
their testing set size is limited (up to 90,000). In contrast, NIOM-DGA
employs over 3.2 Million samples from the ExtraHop Network dataset
for testing and reports up to 98% classification accuracy.

7. Conclusion and future work

Our investigation into Domain Generation Algorithm (DGA) detec-
tion commenced with a thorough review of existing methodologies
and datasets. To establish a robust foundation for the study, we drew
upon a range of publicly available datasets and prior research (Chen
et al., 2024; Kostopoulos et al., 2023; Abakumov, 2024; Javed et al.,
2023; Pye et al., 2020). To address the inherent challenges associated
with DGA detection, we employed the recent and most comprehensive
ExtraHop dataset (to the best of our knowledge) comprising over 16
million DGA and benign domain names. This dataset consists of over
53 different DGA families, ensuring an extensive representation of

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Fig. 8. Running Time Comparison of NIA for Random Forest Model.
the various techniques utilised by malicious actors to generate DGAs.
Drawing upon insights from previous research, we thoroughly curated
this dataset to ensure its representatives of real-world dga domain
patterns. We used advanced feature extraction techniques to extract
and integrate 78 distinct features from the domain names, ranging
from linguistic properties to structural complexity and algorithm-based
feature extraction. This holistic approach allowed us to significantly
enhance the discriminatory capabilities of our classifiers significantly,
facilitating more precise and reliable detection of DGA attacks.

Furthermore, we propose the NIOM-DGA ML model trained on 78
characteristic-algorithmic features extracted from the Extrahop Net-
work Dataset and then optimised using nature-inspired algorithms.
Our experiment results show that NIOM-DGA achieves up to 98%
classification accuracy on the Extrahop Network dataset. To further
consolidate the performance of our proposed model, we tested NIOM-
DGA by employing 10 external datasets consisting of over 37 million
domain names and achieved over 95.7% accuracy on average. Finally,
our comparative analysis presents that NIOM-DGA significantly outper-
forms the related approaches proposed in the recent literature. The
use of Nature-Inspired Algorithms (NIAs) and feature selection and
hyperparameter optimisation has demonstrated significant improve-
ments in DGA detection accuracy and generalisability. This highlights
the transformative potential of NIAs in enhancing traditional machine
learning algorithms for more robust and effective detection.

Deploying NIOM-DGA in real-world scenarios could face several
challenges. The model’s reliance on large datasets and feature opti-
misation may introduce significant computational overhead, limiting
scalability in resource-constrained environments. Additionally, as DGA
techniques evolve, the model may require frequent updates and re-
training to maintain its detection accuracy. Integrating NIOM-DGA into
existing systems like SIEM, EDR, XDR, or cloud security platforms could
be complex, requiring customisation to align with specific workflows.
Real-time domain name analysis may also introduce latency, which
could affect immediate threat detection. Furthermore, the model’s per-
formance might vary depending on the diversity of data across different
organisations, requiring fine-tuning for specific environments.

In contracts, to address these challenges, several solutions can be
implemented. To manage computational overhead, optimising the fea-
ture selection process and leveraging hardware acceleration, such as
17
GPUs or distributed computing, could enhance scalability and effi-
ciency. To tackle the adaptability to evolving DGAs, the model could
incorporate continual learning mechanisms, allowing it to adapt to
new DGA patterns through periodic updates and incremental train-
ing with fresh data. For integration complexity, designing modular
interfaces and offering pre-built integration options with common se-
curity platforms would simplify deployment and reduce customisation
efforts. To mitigate latency concerns, optimising the model for faster
inference times and implementing a hybrid approach that combines
pre-processing with real-time analysis could help maintain performance
without sacrificing speed. Finally, to address the challenge of data
diversity, the model could be trained on a broader range of datasets
and offer configuration options to tailor it to specific organisational
environments, ensuring better accuracy and adaptability.

Future work in this domain could delve deeper into adversarial
attacks and defence strategies. Exploring Generative Adversarial Net-
works (GANs) to generate adversarial examples could uncover model
weaknesses, leading to more robust defence mechanisms. Adversary
retraining strategies could be further investigated to enhance model
resilience against attacks. In contrast, novel techniques like ensemble
learning and model distillation offer additional avenues for improving
model security and resilience.

8. Abbreviations

This research uses various abbreviations to describe concepts, tech-
niques, and algorithms relevant to the study’s objectives, as shown in
Table 14.

Dataset used for this research

The cleaned dataset that was used for features engineering can be
downloaded here NIOM-DGA-Research.

Extrahop network dataset

This dataset comprises 16 million Domain Generation Algorithm
(DGA) and benign domains. The dataset is accessible through the
following link: ExtrahopNetworkDataset (Extrahop Network, 2024).

https://github.com/daniyyell-dev/NIOM-DGA-Research
https://github.com/ExtraHop/DGA-Detection-Training-Dataset

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Table 14
Abbreviations and definitions.
 Acronym Definition Acronym Definition
 AdaBoost Adaptive Boosting ExtraTrees Extremely Randomised Trees
 APC Asynchronous Procedure Call FA Firefly Algorithm
 BA Bat Algorithm FN False Negative
 BiLSTM Bidirectional Long Short-Term Memory FP False Positive
 C&C/C2 Command and Control Server GANs Generative Adversarial Networks
 CNN Convolutional Neural Network GB Gradient Boosting
 CSV Comma-Separated Values GWO Grey Wolf Optimiser
 EDR Endpoint Detection Response SIEM Security Information and Event Management
 DLL Dynamic-Link Library IDS Intrusion Detection System
 DGA Domain Generation Algorithm LSTM Long Short-Term Memory
 DNS Domain Name System LR Logistic Regression
 DT Decision Trees MLP Multi-Layer Perceptron
 RF Random Forest ML Machine Learning
 RNG Random Number Generation NIA Nature-Inspired Algorithm
 SHAP SHapley Additive exPlanation NLP Natural Language Processing
 SLD Second-Level Domains RNN Recurrent Neural Network
 TLD Top-Level Domains RAT Remote Access Trojans
 TN True Negative XAI eXplainable Artificial Intelligence
 TP True Positive XGB eXtreme Gradient Boosting
CRediT authorship contribution statement

Daniel Jeremiah: Writing – original draft, Visualization, Valida-
tion, Software, Resources, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Husnain Rafiq: Writing – review
& editing, Validation, Supervision, Resources, Project administration,
Methodology, Conceptualization. Vinh Thong Ta: Writing – review
& editing, Supervision, Project administration, Methodology. Muham-
mad Usman: Writing – review & editing, Supervision, Project ad-
ministration, Methodology. Mohsin Raza: Writing – review & edit-
ing, Supervision, Project administration, Methodology. Muhammad
Awais: Writing – review & editing, Supervision, Project administration,
Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Abakumov, A., 2024. DGA: Algorithms for generating domain names and dictionaries of
malicious domain names. https://github.com/andrewaeva/DGA. (Accessed 09 May
2025).

Abhiram, P., Anver, S.R., Abdul Rahiman, M., 2023. A deep learning framework for do-
main generation algorithm based malware detection. https://www.researchsquare.
com/article/rs-3154412/v1.

Affinito, A., Zinno, S., Stanco, G., Botta, A., Ventre, G., 2023. The evolution of Mirai
botnet scans over a six-year period. J. Inf. Secur. Appl. 79, 103629.

Ahmed, J., Gharakheili, H.H., Russell, C., Sivaraman, V., 2022. Automatic detection
of DGA-enabled malware using SDN and traffic behavioral modeling. IEEE Trans.
Netw. Sci. Eng. 9, 2922–2939. http://dx.doi.org/10.1109/tnse.2022.3173591.

Anderson, H.S., Woodbridge, J., Filar, B., 2016. DeepDGA: Adversarially-tuned domain
generation and detection. In: Proc. 2016 ACM Work. on Artif. Intell. Secur..
http://dx.doi.org/10.1145/2996758.2996767.

Ashley, D., Hindarto, D., 2015. An analysis of gameover zeus network traffic. https:
//www.giac.org/paper/gcia/8038/analysis-gameover-zeus-network-traffic/114651.

Avertium, 2022. Everything you need to know about bumblebee malware.
https://explore.avertium.com/resource/everything-you-need-to-know-about-
bumblebee-malware.

Bader, J., 2022. The domain generation algorithm of orchard v3 - a DGA seeded by
the bitcoin genesis block. https://bin.re/blog/a-dga-seeded-by-the-bitcoin-genesis-
block/. (Accessed 11 May 2025).

Bader, J., 2023. BumbleBee (malware family). https://bin.re/blog/the-dga-of-
bumblebee/.
18
Bader, J., 2024. baderj_domain_generation_algorithms. https://github.com/baderj/
domain_generation_algorithms/tree/master.

Basak, J., et al., 2023. On computing the jaro similarity between two strings. In: Lect.
Notes Comput. Sci., pp. 31–44. http://dx.doi.org/10.1007/978-981-99-7074-2_3.

Ben, H., 2024. Risks to DNS security and how to uncover DNS based attacks with ex-
abeam. https://community.exabeam.com/s/article/Risks-to-DNS-Security-and-How-
to-Uncover-DNS-Based-Attacks-with-Exabeam.

Brandstaetter, S., 2024. Protecting against cyber threats: the use of domain generation
algorithm (DGA) by threat actors. https://osintph.medium.com/protecting-against-
cyber-threats-the-role-of-domain-generation-algorithm-dga-80c3ec3cda9f. (Accessed
25 April 2024).

Camacho Villalón, C.L., Stützle, T., Dorigo, M., 2020. Grey wolf, firefly and bat
algorithms: Three widespread algorithms that do not contain any novelty. Springer
Nat. Switz. AG 2020 121–133. http://dx.doi.org/10.1007/978-3-030-60376-2_10.

Chagneau, A., Massaoudi, Y., Derbali, I., Yahiaoui, L., 2024. Quantum algorithm for
bioinformatics to compute the similarity between proteins. arXiv preprint arXiv:
2402.09927.

Chen, J.-L., Qiu, J.-F., Chen, Y.-H., 2024. A hybrid DGA DefenseNet for detecting DGA
domain names based on FastText and deep learning techniques. Comput. Secur.
150, 104232. http://dx.doi.org/10.1016/j.cose.2024.104232.

Corley, I., Lwowski, J., Hoffman, J., 2020. DomainGAN: Generating adversarial exam-
ples to attack domain generation algorithm classifiers. https://arxiv.org/abs/1911.
06285.

Daji, Suqitian, 2022. DGA family orchard continues to change; the new version uses
Bitcoin transaction information to generate DGA domain names. 360 Netlab Blog
- Network Security Research Lab at 360 [online]. (Accessed 6 September 2024).

DGArchive, 2025. DGArchive - Fraunhofer FKIE: DGArchive a database of domain
names generated by domain generation algorithms (DGAs), most often found in
malware. https://dgarchive.caad.fkie.fraunhofer.de/. (Accessed 09 May 2025).

Ding, L., Du, P., Hou, H., Zhang, J., Jin, D., Ding, S., 2023. Botnet DGA domain name
classification using transformer network with hybrid embedding. Big Data Res. 33,
100395. http://dx.doi.org/10.1016/j.bdr.2023.100395.

El-Ghamry, A., Gaber, T., Mohammed, K.K., Hassanien, A.E., 2023. Optimized and
efficient image-based IoT malware detection method. Electronics 12 (3), 708.
http://dx.doi.org/10.3390/electronics12030708.

Elizarov, D., Katkov, A., 2023. Practical malware analysis. Her. Dagestan State Tech.
Univ. Tech. Sci. 50 (3), 66–71.

Extrahop Network, 2024. ExtraHop/DGA-Detection-Training-Dataset. https://github.
com/ExtraHop/DGA-Detection-Training-Dataset.

Ford, N., 2024. Global data breaches and cyber attacks in 2024. https://www.
itgovernance.co.uk/blog/global-data-breaches-and-cyber-attacks-in-2024. (Accessed
01 May 2024).

Givre, C., DGA Dataset, https://www.kaggle.com/datasets/gtkcyber/dga-dataset.
Gogoi, B., Ahmed, T., 2023. DGA domain detection using pretrained character based

transformer models. In: 2023 IEEE Guwahati Subsection Conference. GCON, pp.
01–06. http://dx.doi.org/10.1109/GCON58516.2023.10183602.

Gregório, R., 2023. DGA_Legit_ASCII: DGA Netlab Majestic Legit. https://www.kaggle.
com/datasets/rafaelgregrio/dga-legit-ascii. (Accessed 09 May 2025).

Griffiths, C., 2023. The latest ransomware statistics (updated january 2023) | AAG IT
support. https://aag-it.com/the-latest-ransomware-statistics/.

Harpo, 2023. Harpomaxx: DGA-detection dataset. https://huggingface.co/datasets/
harpomaxx/dga-detection. (Accessed 09 May 2025).

Hasan, M.R., Ferdous, J., 2024. Dominance of AI and machine learning techniques
in hybrid movie recommendation system applying text-to-number conversion and
cosine similarity approaches. J. Comput. Sci. Technol. Stud. 6 (1), 94–102.

https://github.com/andrewaeva/DGA
https://www.researchsquare.com/article/rs-3154412/v1
https://www.researchsquare.com/article/rs-3154412/v1
https://www.researchsquare.com/article/rs-3154412/v1
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb3
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb3
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb3
http://dx.doi.org/10.1109/tnse.2022.3173591
http://dx.doi.org/10.1145/2996758.2996767
https://www.giac.org/paper/gcia/8038/analysis-gameover-zeus-network-traffic/114651
https://www.giac.org/paper/gcia/8038/analysis-gameover-zeus-network-traffic/114651
https://www.giac.org/paper/gcia/8038/analysis-gameover-zeus-network-traffic/114651
https://explore.avertium.com/resource/everything-you-need-to-know-about-bumblebee-malware
https://explore.avertium.com/resource/everything-you-need-to-know-about-bumblebee-malware
https://explore.avertium.com/resource/everything-you-need-to-know-about-bumblebee-malware
https://bin.re/blog/a-dga-seeded-by-the-bitcoin-genesis-block/
https://bin.re/blog/a-dga-seeded-by-the-bitcoin-genesis-block/
https://bin.re/blog/a-dga-seeded-by-the-bitcoin-genesis-block/
https://bin.re/blog/the-dga-of-bumblebee/
https://bin.re/blog/the-dga-of-bumblebee/
https://bin.re/blog/the-dga-of-bumblebee/
https://github.com/baderj/domain_generation_algorithms/tree/master
https://github.com/baderj/domain_generation_algorithms/tree/master
https://github.com/baderj/domain_generation_algorithms/tree/master
http://dx.doi.org/10.1007/978-981-99-7074-2_3
https://community.exabeam.com/s/article/Risks-to-DNS-Security-and-How-to-Uncover-DNS-Based-Attacks-with-Exabeam
https://community.exabeam.com/s/article/Risks-to-DNS-Security-and-How-to-Uncover-DNS-Based-Attacks-with-Exabeam
https://community.exabeam.com/s/article/Risks-to-DNS-Security-and-How-to-Uncover-DNS-Based-Attacks-with-Exabeam
https://osintph.medium.com/protecting-against-cyber-threats-the-role-of-domain-generation-algorithm-dga-80c3ec3cda9f
https://osintph.medium.com/protecting-against-cyber-threats-the-role-of-domain-generation-algorithm-dga-80c3ec3cda9f
https://osintph.medium.com/protecting-against-cyber-threats-the-role-of-domain-generation-algorithm-dga-80c3ec3cda9f
http://dx.doi.org/10.1007/978-3-030-60376-2_10
http://arxiv.org/abs/2402.09927
http://arxiv.org/abs/2402.09927
http://arxiv.org/abs/2402.09927
http://dx.doi.org/10.1016/j.cose.2024.104232
https://arxiv.org/abs/1911.06285
https://arxiv.org/abs/1911.06285
https://arxiv.org/abs/1911.06285
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb18
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb18
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb18
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb18
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb18
https://dgarchive.caad.fkie.fraunhofer.de/
http://dx.doi.org/10.1016/j.bdr.2023.100395
http://dx.doi.org/10.3390/electronics12030708
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb22
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb22
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb22
https://github.com/ExtraHop/DGA-Detection-Training-Dataset
https://github.com/ExtraHop/DGA-Detection-Training-Dataset
https://github.com/ExtraHop/DGA-Detection-Training-Dataset
https://www.itgovernance.co.uk/blog/global-data-breaches-and-cyber-attacks-in-2024
https://www.itgovernance.co.uk/blog/global-data-breaches-and-cyber-attacks-in-2024
https://www.itgovernance.co.uk/blog/global-data-breaches-and-cyber-attacks-in-2024
https://www.kaggle.com/datasets/gtkcyber/dga-dataset
http://dx.doi.org/10.1109/GCON58516.2023.10183602
https://www.kaggle.com/datasets/rafaelgregrio/dga-legit-ascii
https://www.kaggle.com/datasets/rafaelgregrio/dga-legit-ascii
https://www.kaggle.com/datasets/rafaelgregrio/dga-legit-ascii
https://aag-it.com/the-latest-ransomware-statistics/
https://huggingface.co/datasets/harpomaxx/dga-detection
https://huggingface.co/datasets/harpomaxx/dga-detection
https://huggingface.co/datasets/harpomaxx/dga-detection
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb30
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb30
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb30
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb30
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb30

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Hassaoui, M., Hanini, M., El Kafhali, S., 2024. Unsupervised clustering for a com-
parative methodology of machine learning models to detect domain-generated
algorithms based on an alphanumeric features analysis. J. Netw. Syst. Manage.
32 (1), http://dx.doi.org/10.1007/s10922-023-09793-6.

Highnam, K., Puzio, D., Luo, S., Jennings, N.R., 2021. Real-time detection of dictionary
DGA network traffic using deep learning. SN Comput. Sci. 2, http://dx.doi.org/10.
1007/s42979-021-00507-w.

Hoang, X.D., Vu, X.H., 2021. An improved model for detecting DGA botnets using
random forest algorithm. Inf. Secur. J.: A Glob. Perspect. 1–10. http://dx.doi.org/
10.1080/19393555.2021.1934198.

Hsu, C.-M., Yang, C.-C., Cheng, H.-H., Setiasabda, P.E., Leu, J.-S., 2021. Enhancing file
entropy analysis to improve machine learning detection rate of ransomware. IEEE
Access 9, 138345–138351. http://dx.doi.org/10.1109/ACCESS.2021.3114148.

Hu, X., Chen, H., Li, M., Cheng, G., Li, R., Wu, H., Yuan, Y., 2023. ReplaceDGA: BiLSTM
based adversarial DGA with high anti-detection ability. IEEE Trans. Inf. Forensics
Secur..

Hu, X., Li, M., Cheng, G., Li, R., Wu, H., Gong, J., 2022. Towards accurate DGA
detection based on siamese network with insufficient training samples. In: ICC 2022
- IEEE Int. Conf. on Commun. http://dx.doi.org/10.1109/icc45855.2022.9838409.

Hu, B., Wang, H., Wu, K., Li, Z., 2024. Automatic assessing system of operating process
based on Needleman-Wunsch algorithm. Int. Core J. Eng. 10 (3), 205–212.

Javaheri, D., Gorgin, S., Lee, J.-A., Masdari, M., 2023. Fuzzy logic-based ddos attacks
and network traffic anomaly detection methods: Classification, overview, and future
perspectives. Inform. Sci. 626, 315–338.

Javed, M.A., Rashid, I., Rashdi, A., 2023. DGA malware deep learning detection and
its optimization with novel activation function. J. Comput. Biomed. Inform. 4,
285–297.

Kaspersky, 2025. Kaspersky state of ransomware report–2025: Global and regional
insights for international anti-ransomware day. https://www.kaspersky.com/about/
press-releases/kaspersky-state-of-ransomware-report-2025-global-and-regional-
insights-for-international-anti-ransomware-day. (Accessed 09 May 2025).

Katz, O., 2021. Digging deeper – an in-depth analysis of a fast flux net-
work. https://www.akamai.com/blog/security/digging-deeper-an-in-depth-analysis-
of-a-fast-flux-network.

Kemmerling, T., 2023. Dataset for detecting domains generated by algorithm | Extra-
Hop. https://www.extrahop.com/blog/dataset-for-detecting-domains-generated-by-
algorithm-extrahop. (Accessed 01 May 2024).

Kirişci, M., 2023. New cosine similarity and distance measures for fermatean fuzzy sets
and TOPSIS approach. Knowl. Inf. Syst. 65 (2), 855–868.

Kostopoulos, N., Kalogeras, D., Pantazatos, D., Grammatikou, M., Maglaris, V., 2023.
SHAP interpretations of tree and neural network DNS classifiers for analyzing DGA
family characteristics. IEEE Access 11, 61144–61160. http://dx.doi.org/10.1109/
access.2023.3286313.

Liang, J., Chen, S., Wei, Z., Zhao, S., Zhao, W., 2022. HAGDetector: Heterogeneous
DGA domain name detection model. Comput. Secur. 120, 102803. http://dx.doi.
org/10.1016/j.cose.2022.10280.

Likić, V., 2007. The Needleman-Wunsch algorithm for sequence alignment. 7th Melb.
Bioinform. Course 1/46.

Mehri, B., Goussard, Y., Trépanier, M., 2023. Lookup Table String Similarity Algorithm.
Bureau de Montreal, Université de Montreal.

Mehta, G., Jain, S., Das, P., Tripathi, V., 2023. Machine learning approach for malware
detection and classification using bio inspired algorithms. In: 2023 International
Conference on Evolutionary Algorithms and Soft Computing Techniques. EASCT,
pp. 1–6. http://dx.doi.org/10.1109/EASCT59475.2023.10392768.

Mestour, Z., 2021. Alexa 1millioon and domain generation algorithm. https://www.
kaggle.com/datasets/slashtea/domain-generation-algorithm.

Moşolea, V., Oprişa, C., 2023. Detecting domain generation algorithms in mal-
ware traffic using constrained resources. http://dx.doi.org/10.1109/iccp60212.
2023.10398684, IEEE.

N., M., D., R., S., M., Sharma, V., 2022. Performance analysis of DGA-driven botnets us-
ing artificial neural networks. In: 2022 10th Int. Conf. on Reliab. Infocom Technol.
Optim. (Trends Futur. Dir.. ICRITO, http://dx.doi.org/10.1109/icrito56286.2022.
9965044.

Nowroozi, E., Mekdad, Y., Berenjestanaki, M.H., Conti, M., EL Fergougui, A., 2022.
Demystifying the transferability of adversarial attacks in computer networks. IEEE
Trans. Netw. Serv. Manag. http://dx.doi.org/10.1109/tnsm.2022.3164354, 1–1.

Pan, R., Chen, J., Ma, H., Bai, X., 2022. Using extended character feature in Bi-LSTM
for DGA domain name detection. IEEE Access http://dx.doi.org/10.1109/icis54925.
2022.9882343.

Papadogiannaki, E., Ioannidis, S., 2023. Pump up the JARM: Studying the evolution of
botnets using active TLS fingerprinting. In: 2023 IEEE Symposium on Computers
and Communications. ISCC, IEEE, pp. 764–770.

Patil, S.D., Dharme, M., Patil, A.J., Gautam, Jarial, R.K., Singh, A., 2022. DGA based en-
semble learning and random forest models for condition assessment of transformers.
IEEE Access http://dx.doi.org/10.1109/smartgencon56628.2022.10083672.

Patsakis, C., Casino, F., 2021. Exploiting statistical and structural features for the
detection of domain generation algorithms. J. Inf. Secur. Appl. 58, 102725. http:
//dx.doi.org/10.1016/j.jisa.2020.102725.
19
Prasetya, A.Y., Aini, K.I., Lim, C., 2023. Comparative analysis of attack behavior pat-
terns in petya, cryptinfinite, and locky ransomware using hybrid analysis. In: 2023
IEEE International Conference on Cryptography, Informatics, and Cybersecurity.
ICoCICs, IEEE, pp. 29–34.

Pye, J., Issac, B., Aslam, N., Rafiq, H., 2020. Android malware classification using
machine learning and bio-inspired optimisation algorithms. In: 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). pp. 1777–1782. http://dx.doi.org/10.1109/TrustCom50675.
2020.00244.

Quezada, V., Astudillo-Salinas, F., Tello-Oquendo, L., Bernal, P., 2022. Real-time bot
infection detection system using dns fingerprinting and machine-learning. SSRN
Electron. J. http://dx.doi.org/10.2139/ssrn.4292617.

Rafiq, H., Aslam, N., Aleem, M., Issac, B., Randhawa, R.H., 2022. AndroMalPack:
Enhancing the ML-based malware classification by detection and removal of
repacked apps for android systems. Sci. Rep. 12 (1), http://dx.doi.org/10.1038/
s41598-022-23766-w.

Rana, S., Aksoy, A., 2021. Automated fast-flux detection using machine learning and
genetic algorithms. In: IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications Workshops. INFOCOM WKSHPS, pp. 1–6. http://dx.doi.org/10.
1109/INFOCOMWKSHPS51825.2021.9484614.

Randhawa, R.H., Aslam, N., Alauthman, M., Rafiq, H., 2023. Evasion generative adver-
sarial network for low data regimes. IEEE Trans. Artif. Intell. 4 (5), 1076–1088.
http://dx.doi.org/10.1109/tai.2022.3196283.

Randhawa, R.H., Aslam, N., Alauthman, M., Rafiq, H., Comeau, F., 2021. Security
hardening of botnet detectors using generative adversarial networks. IEEE Access
9, 78276–78292. http://dx.doi.org/10.1109/access.2021.3083421.

Rao, M.V., Midhunchakkaravarthy, D., Dandu, S., 2023. Propagation of computer
worms—A study. In: International Conference on Soft Computing and Signal
Processing. Springer, pp. 629–639.

Ren, Y., Li, H., Liu, P., Liu, J., Zhu, H., Sun, L., 2023. CL-GAN: a GAN-based continual
learning model for generating and detecting AGDs. Comput. Secur. 131, 103317.
http://dx.doi.org/10.1016/j.cose.2023.103317.

Sahni, S., Rajasekaran, S., 2023. On computing the jaro similarity between two strings.
In: Bioinformatics Research and Applications: 19th International Symposium, ISBRA
2023, WrocłAw, Poland, October 9–12, 2023, Proceedings, vol. 14248, Springer
Nature, p. 31.

Sea, Law, N.F., 2023. Use of subword tokenization for domain generation algorithm
classification. Cybersecurity 6, http://dx.doi.org/10.1186/s42400-023-00183-8.

Shah, A.V., 2025. 15 million domain names dataset: DGA and benign domains. https://
www.kaggle.com/datasets/aayushah19/dga-or-benign-domain-names. (Accessed 09
May 2025).

Shahzad, H., Sattar, A.R., Skandaraniyam, J., 2021. DGA domain detection using
deep learning. In: 2021 IEEE 5th Int. Conf. on Cryptogr. Secur. Priv.. CSP, http:
//dx.doi.org/10.1109/csp51677.2021.9357591.

Sharma, G., 2023. ExtraHop open sources its machine learning dataset. https://itbrief.
co.uk/story/extrahop-open-sources-its-machine-learning-dataset. (Accessed 01 May
2024).

Sharma Paudel, S., 1.5 Million (Umbrella, DGA) Domains with Classes, https://www.
kaggle.com/datasets/sabindcoster/15-million-umbrelladga-domains-with-classes.

Sidi, L., Nadler, A., Shabtai, A., 2019. MaskDGA: a black-box evasion technique against
DGA classifiers and adversarial defenses. http://dx.doi.org/10.48550/arXiv.1902.
08909.

Sivaguru, R., Peck, J., Olumofin, F., Nascimento, A., De Cock, M., 2020. Inline
detection of DGA domains using side information. IEEE Access 8, 141910–141922.
http://dx.doi.org/10.1109/access.2020.3013494.

Sreekanta, N., 2022. Machine learning in security: Deep learning based DGA detection
with a pre-trained model. https://www.splunk.com/en_us/blog/security/machine-
learning-in-security-deep-learning-based-dga-detection-with-a-pre-trained-
model.html.

Sun, X., Liu, Z., 2023. Domain generation algorithms detection with feature extraction
and domain center construction. PLoS One 18, e0279866. http://dx.doi.org/10.
1371/journal.pone.0279866.

Suryotrisongko, H., Musashi, Y., 2022. Evaluating hybrid quantum-classical deep learn-
ing for cybersecurity botnet DGA detection. Procedia Comput. Sci. 197, 223–229.
http://dx.doi.org/10.1016/j.procs.2021.12.135.

Sutheekshan, B., Basheer, S., Thangavel, G., Sharma, O.P., 2024. Evolution of malware
targeting IoT devices and botnet formation. IC2PCT, In: 2024 IEEE International
Conference on Computing, Power and Communication Technologies, vol. 5, IEEE,
pp. 1415–1422.

Tatar, O., 2024. DGA data sets. https://www.kaggle.com/datasets/omurcantatar/dga-
data-sets. (Accessed 09 May 2025).

Tuan, T.A., Long, H.V., Taniar, D., 2022. On detecting and classifying DGA botnets
and their families. Comput. Secur. 113, 102549. http://dx.doi.org/10.1016/j.cose.
2021.102549.

Tyagi, A., 2023. International journal of creative research thoughts (IJCRT). Int. J.
Creative Res. Thoughts (IJCRT): Int. Open Access Peer- Rev. Ref. J. 11 (9),
2320–2882.

Velasco-Mata, J., González-Castro, V., Fidalgo, E., Alegre, E., 2023. Real-time botnet
detection on large network bandwidths using machine learning. Sci. Rep. 13,
http://dx.doi.org/10.1038/s41598-023-31260-0.

http://dx.doi.org/10.1007/s10922-023-09793-6
http://dx.doi.org/10.1007/s42979-021-00507-w
http://dx.doi.org/10.1007/s42979-021-00507-w
http://dx.doi.org/10.1007/s42979-021-00507-w
http://dx.doi.org/10.1080/19393555.2021.1934198
http://dx.doi.org/10.1080/19393555.2021.1934198
http://dx.doi.org/10.1080/19393555.2021.1934198
http://dx.doi.org/10.1109/ACCESS.2021.3114148
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb35
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb35
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb35
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb35
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb35
http://dx.doi.org/10.1109/icc45855.2022.9838409
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb37
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb37
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb37
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb38
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb38
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb38
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb38
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb38
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb39
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb39
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb39
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb39
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb39
https://www.kaspersky.com/about/press-releases/kaspersky-state-of-ransomware-report-2025-global-and-regional-insights-for-international-anti-ransomware-day
https://www.kaspersky.com/about/press-releases/kaspersky-state-of-ransomware-report-2025-global-and-regional-insights-for-international-anti-ransomware-day
https://www.kaspersky.com/about/press-releases/kaspersky-state-of-ransomware-report-2025-global-and-regional-insights-for-international-anti-ransomware-day
https://www.kaspersky.com/about/press-releases/kaspersky-state-of-ransomware-report-2025-global-and-regional-insights-for-international-anti-ransomware-day
https://www.kaspersky.com/about/press-releases/kaspersky-state-of-ransomware-report-2025-global-and-regional-insights-for-international-anti-ransomware-day
https://www.akamai.com/blog/security/digging-deeper-an-in-depth-analysis-of-a-fast-flux-network
https://www.akamai.com/blog/security/digging-deeper-an-in-depth-analysis-of-a-fast-flux-network
https://www.akamai.com/blog/security/digging-deeper-an-in-depth-analysis-of-a-fast-flux-network
https://www.extrahop.com/blog/dataset-for-detecting-domains-generated-by-algorithm-extrahop
https://www.extrahop.com/blog/dataset-for-detecting-domains-generated-by-algorithm-extrahop
https://www.extrahop.com/blog/dataset-for-detecting-domains-generated-by-algorithm-extrahop
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb43
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb43
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb43
http://dx.doi.org/10.1109/access.2023.3286313
http://dx.doi.org/10.1109/access.2023.3286313
http://dx.doi.org/10.1109/access.2023.3286313
http://dx.doi.org/10.1016/j.cose.2022.10280
http://dx.doi.org/10.1016/j.cose.2022.10280
http://dx.doi.org/10.1016/j.cose.2022.10280
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb46
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb46
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb46
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb47
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb47
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb47
http://dx.doi.org/10.1109/EASCT59475.2023.10392768
https://www.kaggle.com/datasets/slashtea/domain-generation-algorithm
https://www.kaggle.com/datasets/slashtea/domain-generation-algorithm
https://www.kaggle.com/datasets/slashtea/domain-generation-algorithm
http://dx.doi.org/10.1109/iccp60212.2023.10398684
http://dx.doi.org/10.1109/iccp60212.2023.10398684
http://dx.doi.org/10.1109/iccp60212.2023.10398684
http://dx.doi.org/10.1109/icrito56286.2022.9965044
http://dx.doi.org/10.1109/icrito56286.2022.9965044
http://dx.doi.org/10.1109/icrito56286.2022.9965044
http://dx.doi.org/10.1109/tnsm.2022.3164354
http://dx.doi.org/10.1109/icis54925.2022.9882343
http://dx.doi.org/10.1109/icis54925.2022.9882343
http://dx.doi.org/10.1109/icis54925.2022.9882343
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb54
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb54
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb54
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb54
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb54
http://dx.doi.org/10.1109/smartgencon56628.2022.10083672
http://dx.doi.org/10.1016/j.jisa.2020.102725
http://dx.doi.org/10.1016/j.jisa.2020.102725
http://dx.doi.org/10.1016/j.jisa.2020.102725
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb57
http://dx.doi.org/10.1109/TrustCom50675.2020.00244
http://dx.doi.org/10.1109/TrustCom50675.2020.00244
http://dx.doi.org/10.1109/TrustCom50675.2020.00244
http://dx.doi.org/10.2139/ssrn.4292617
http://dx.doi.org/10.1038/s41598-022-23766-w
http://dx.doi.org/10.1038/s41598-022-23766-w
http://dx.doi.org/10.1038/s41598-022-23766-w
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484614
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484614
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484614
http://dx.doi.org/10.1109/tai.2022.3196283
http://dx.doi.org/10.1109/access.2021.3083421
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb64
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb64
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb64
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb64
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb64
http://dx.doi.org/10.1016/j.cose.2023.103317
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb66
http://dx.doi.org/10.1186/s42400-023-00183-8
https://www.kaggle.com/datasets/aayushah19/dga-or-benign-domain-names
https://www.kaggle.com/datasets/aayushah19/dga-or-benign-domain-names
https://www.kaggle.com/datasets/aayushah19/dga-or-benign-domain-names
http://dx.doi.org/10.1109/csp51677.2021.9357591
http://dx.doi.org/10.1109/csp51677.2021.9357591
http://dx.doi.org/10.1109/csp51677.2021.9357591
https://itbrief.co.uk/story/extrahop-open-sources-its-machine-learning-dataset
https://itbrief.co.uk/story/extrahop-open-sources-its-machine-learning-dataset
https://itbrief.co.uk/story/extrahop-open-sources-its-machine-learning-dataset
https://www.kaggle.com/datasets/sabindcoster/15-million-umbrelladga-domains-with-classes
https://www.kaggle.com/datasets/sabindcoster/15-million-umbrelladga-domains-with-classes
https://www.kaggle.com/datasets/sabindcoster/15-million-umbrelladga-domains-with-classes
http://dx.doi.org/10.48550/arXiv.1902.08909
http://dx.doi.org/10.48550/arXiv.1902.08909
http://dx.doi.org/10.48550/arXiv.1902.08909
http://dx.doi.org/10.1109/access.2020.3013494
https://www.splunk.com/en_us/blog/security/machine-learning-in-security-deep-learning-based-dga-detection-with-a-pre-trained-model.html
https://www.splunk.com/en_us/blog/security/machine-learning-in-security-deep-learning-based-dga-detection-with-a-pre-trained-model.html
https://www.splunk.com/en_us/blog/security/machine-learning-in-security-deep-learning-based-dga-detection-with-a-pre-trained-model.html
https://www.splunk.com/en_us/blog/security/machine-learning-in-security-deep-learning-based-dga-detection-with-a-pre-trained-model.html
https://www.splunk.com/en_us/blog/security/machine-learning-in-security-deep-learning-based-dga-detection-with-a-pre-trained-model.html
http://dx.doi.org/10.1371/journal.pone.0279866
http://dx.doi.org/10.1371/journal.pone.0279866
http://dx.doi.org/10.1371/journal.pone.0279866
http://dx.doi.org/10.1016/j.procs.2021.12.135
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb77
https://www.kaggle.com/datasets/omurcantatar/dga-data-sets
https://www.kaggle.com/datasets/omurcantatar/dga-data-sets
https://www.kaggle.com/datasets/omurcantatar/dga-data-sets
http://dx.doi.org/10.1016/j.cose.2021.102549
http://dx.doi.org/10.1016/j.cose.2021.102549
http://dx.doi.org/10.1016/j.cose.2021.102549
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb80
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb80
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb80
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb80
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb80
http://dx.doi.org/10.1038/s41598-023-31260-0

D. Jeremiah et al. Computers & Security 157 (2025) 104561
Wang, Z., Guo, Y., 2021. Neural networks based domain name generation. J. Inf.
Secur. Appl. (ISSN: 2214-2126) 61, 102948. http://dx.doi.org/10.1016/j.jisa.2021.
102948.

Wang, H., Tang, Z., Li, H., Zhang, J., Li, S., Wang, J., 2023. CI_GRU: An efficient DGA
botnet classification model based on an attention recurrence plot. Comput. Netw.
235, 109992.

Wang, S., Zhou, Z., Li, B., Li, Z., Kan, Z., 2024. Multi-modal interaction with
transformers: bridging robots and human with natural language. Robotica 42 (2),
415–434.
20
Weissgerber, N., Jenke, T., Padilla, E., Bruckschen, L., 2023. Open SESAME: Fighting
botnets with seed reconstructions of domain generation algorithms. http://dx.doi.
org/10.48550/arXiv.2301.05048.

Yan, L., Yang, Y., Li, Y., Wang, W., Yu, Z.Y., 2023. Classification of malicious DGA
domain name families based on BiGRU and attention mechanisms. In: IEEE ITAIC.
http://dx.doi.org/10.1109/itaic58329.2023.10408904, ISSN: 2693-2865.

Zhao, D., Li, H., Sun, X., Tang, Y., 2023a. Detecting DGA-based botnets through
effective phonics-based features. Future Gener. Comput. Syst. 143, 105–117. http:
//dx.doi.org/10.1016/j.future.2023.01.027.

Zhao, D., Li, H., Sun, X., Tang, Y., 2023b. Detecting DGA-based botnets through
effective phonics-based features. Future Gener. Comput. Syst. 143, 105–117.

http://dx.doi.org/10.1016/j.jisa.2021.102948
http://dx.doi.org/10.1016/j.jisa.2021.102948
http://dx.doi.org/10.1016/j.jisa.2021.102948
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb83
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb83
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb83
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb83
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb83
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb84
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb84
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb84
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb84
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb84
http://dx.doi.org/10.48550/arXiv.2301.05048
http://dx.doi.org/10.48550/arXiv.2301.05048
http://dx.doi.org/10.48550/arXiv.2301.05048
http://dx.doi.org/10.1109/itaic58329.2023.10408904
http://dx.doi.org/10.1016/j.future.2023.01.027
http://dx.doi.org/10.1016/j.future.2023.01.027
http://dx.doi.org/10.1016/j.future.2023.01.027
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb88
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb88
http://refhub.elsevier.com/S0167-4048(25)00250-0/sb88

	NIOM-DGA: Nature-inspired optimised ML-based model for DGA detection
	Introduction
	Background
	Related Malware Utilising DGA
	Orchard v3 malware
	GameoverZeus
	BumbleBee Malware Family

	Related Work
	Challenges in Feature Extraction Process

	ExtraHop Networks Dataset Description
	External Validation: NIOM-DGA Training and Testing Datasets

	Nature-inspired Optimised ML-based model (NIOM-DGA)
	Research Methodology
	Data Preprocessing and Features Extraction
	NIOM-DGA Features Importance
	Learning and Experimental Phase
	Random Forest Hyper-parameters Proposed by NIAs

	Comparative analysis with other approaches
	Conclusion and Future Work
	Abbreviations
	Dataset Used for this research
	Extrahop Network Dataset

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

